搜索
开启左侧

Microwave.Engineering,.David.M..Pozar,4ed,.Wiley,2012【微波工程4ed|微网推荐】

    [复制链接]
19820 380
generalgaowei  士官⑥  发表于 2012-3-19 13:46:51  | 显示全部楼层
好书看看。。。
以己之微·网博天下:博览微网之术·创造成功之路!
yubo901016  士官⑥  发表于 2013-12-20 23:47:12  来自手机  | 显示全部楼层
00d44 发表于 2012-3-11 02:22
觉得给力的,顶贴支持哈
**** 本内容被作者隐藏 ****

不得不看的书
以己之微·网博天下:博览微网之术·创造成功之路!

举报 使用道具

回复 支持 反对
おじさん  士官⑥  发表于 2015-12-22 09:55:11  | 显示全部楼层
顶顶顶顶顶的顶顶顶顶顶顶顶顶顶顶的顶顶顶顶顶顶顶顶顶顶
以己之微·网博天下:博览微网之术·创造成功之路!

举报 使用道具

回复 支持 反对
sure549  少尉  发表于 2014-1-28 15:41:00  | 显示全部楼层
多谢楼主n多谢楼主n多谢楼主n多谢楼主n
以己之微·网博天下:博览微网之术·创造成功之路!

举报 使用道具

回复 支持 反对

马上注册,结交更多好友,享用更多功能,让你轻松玩转微网社区

您需要 登录 才可以下载或查看,没有帐号?注册会员 微信登录

x
1.jpg

Microwave Engineering


Fourth Edition

David M. Pozar

University of Massachusetts at Amherst


1 ELECTROMAGNETIC THEORY 1

1.1 Introduction to Microwave Engineering 1

Applications of Microwave Engineering 2

A Short History of Microwave Engineering 4

1.2 Maxwell’s Equations 6

1.3 Fields in Media and Boundary Conditions 10

Fields at a General Material Interface 12 Fields at a Dielectric Interface 14

Fields at the Interface with a Perfect Conductor (Electric Wall) 14

The MagneticWall Boundary Condition 15 The Radiation Condition 15

1.4 The Wave Equation and Basic Plane Wave Solutions 15

The Helmholtz Equation 15 Plane Waves in a Lossless Medium 16

Plane Waves in a General Lossy Medium 17

Plane Waves in a Good Conductor 19

1.5 General Plane Wave Solutions 20

Circularly Polarized Plane Waves 24

1.6 Energy and Power 25

Power Absorbed by a Good Conductor 27

1.7 Plane Wave Reflection from a Media Interface 28

General Medium 28 Lossless Medium 30

Good Conductor 31 Perfect Conductor 32

The Surface Impedance Concept 33

1.8 Oblique Incidence at a Dielectric Interface 35

Parallel Polarization 36 Perpendicular Polarization 37

Total Reflection and Surface Waves 38

1.9 Some Useful Theorems 40

The Reciprocity Theorem 40 Image Theory 42

ix

x Contents

2 TRANSMISSION LINE THEORY 48

2.1 The Lumped-Element Circuit Model for a Transmission Line 48

Wave Propagation on a Transmission Line 50 The Lossless Line 51

2.2 Field Analysis of Transmission Lines 51

Transmission Line Parameters 51

The Telegrapher Equations Derived from Field Analysis of a Coaxial Line 54

Propagation Constant, Impedance, and Power Flow for the Lossless

Coaxial Line 56

2.3 The Terminated Lossless Transmission Line 56

Special Cases of Lossless Terminated Lines 59

2.4 The Smith Chart 63

The Combined Impedance–Admittance Smith Chart 67

The Slotted Line 68

2.5 The Quarter-Wave Transformer 72

The Impedance Viewpoint 72 The Multiple-Reflection Viewpoint 74

2.6 Generator and Load Mismatches 76

Load Matched to Line 77 Generator Matched to Loaded Line 77

Conjugate Matching 77

2.7 Lossy Transmission Lines 78

The Low-Loss Line 79 The Distortionless Line 80

The Terminated Lossy Line 81

The Perturbation Method for Calculating Attenuation 82

The Wheeler Incremental Inductance Rule 83

2.8 Transients on Transmission Lines 85

Reflection of Pulses from a Terminated Transmission Line 86

Bounce Diagrams for Transient Propagation 87

3 TRANSMISSION LINES AND WAVEGUIDES 95

3.1 General Solutions for TEM, TE, and TM Waves 96

TEM Waves 98 TE Waves 100

TM Waves 100 Attenuation Due to Dielectric Loss 101

3.2 Parallel PlateWaveguide 102

TEM Modes 103 TM Modes 104 TE Modes 107

3.3 Rectangular Waveguide 110

TE Modes 110 TM Modes 115

TEm0 Modes of a Partially Loaded Waveguide 119

3.4 Circular Waveguide 121

TE Modes 122 TM Modes 125

3.5 Coaxial Line 130

TEM Modes 130 Higher Order Modes 131

Contents xi

3.6 Surface Waves on a Grounded Dielectric Sheet 135

TM Modes 135 TE Modes 137

3.7 Stripline 141

Formulas for Propagation Constant, Characteristic Impedance,

and Attenuation 141 An Approximate Electrostatic Solution 144

3.8 Microstrip Line 147

Formulas for Effective Dielectric Constant, Characteristic Impedance,

and Attenuation 148

Frequency-Dependent Effects and Higher Order Modes 150

3.9 The Transverse Resonance Technique 153

TE0n Modes of a Partially Loaded Rectangular Waveguide 153

3.10 Wave Velocities and Dispersion 154

Group Velocity 155

3.11 Summary of Transmission Lines and Waveguides 157

Other Types of Lines and Guides 158

4 MICROWAVE NETWORK ANALYSIS 165

4.1 Impedance and Equivalent Voltages and Currents 166

Equivalent Voltages and Currents 166 The Concept of Impedance 170

Even and Odd Properties of Z(ω) and (ω) 173

4.2 Impedance and Admittance Matrices 174

Reciprocal Networks 175 Lossless Networks 177

4.3 The Scattering Matrix 178

Reciprocal Networks and Lossless Networks 181

A Shift in Reference Planes 184

Power Waves and Generalized Scattering Parameters 185

4.4 The Transmission (ABCD) Matrix 188

Relation to Impedance Matrix 191

Equivalent Circuits for Two-Port Networks 191

4.5 Signal Flow Graphs 194

Decomposition of Signal Flow Graphs 195

Application to Thru-Reflect-Line Network Analyzer Calibration 197

4.6 Discontinuities and Modal Analysis 203

Modal Analysis of an H-Plane Step in Rectangular Waveguide 203

4.7 Excitation of Waveguides—Electric and Magnetic Currents 210

Current Sheets That Excite Only One Waveguide Mode 210

Mode Excitation from an Arbitrary Electric or Magnetic Current Source 212

4.8 Excitation of Waveguides—Aperture Coupling 215

Coupling Through an Aperture in a Transverse Waveguide Wall 218

Coupling Through an Aperture in the Broad Wall of a Waveguide 220

xii Contents

5 IMPEDANCE MATCHING AND TUNING 228

5.1 Matching with Lumped Elements (L Networks) 229

Analytic Solutions 230 Smith Chart Solutions 231

5.2 Single-Stub Tuning 234

Shunt Stubs 235 Series Stubs 238

5.3 Double-Stub Tuning 241

Smith Chart Solution 242 Analytic Solution 245

5.4 The Quarter-Wave Transformer 246

5.5 The Theory of Small Reflections 250

Single-Section Transformer 250 Multisection Transformer 251

5.6 Binomial Multisection Matching Transformers 252

5.7 Chebyshev Multisection Matching Transformers 256

Chebyshev Polynomials 257 Design of Chebyshev Transformers 258

5.8 Tapered Lines 261

Exponential Taper 262 Triangular Taper 263

Klopfenstein Taper 264

5.9 The Bode–Fano Criterion 266

6 MICROWAVE RESONATORS 272

6.1 Series and Parallel Resonant Circuits 272

Series Resonant Circuit 272 Parallel Resonant Circuit 275

Loaded and Unloaded Q 277

6.2 Transmission Line Resonators 278

Short-Circuited λ/2 Line 278 Short-Circuited λ/4 Line 281

Open-Circuited λ/2 Line 282

6.3 Rectangular Waveguide Cavity Resonators 284

Resonant Frequencies 284 Unloaded Q of the TE10 Mode 286

6.4 Circular Waveguide Cavity Resonators 288

Resonant Frequencies 289 Unloaded Q of the TEnm Mode 291

6.5 Dielectric Resonators 293

Resonant Frequencies of TE01δ Mode 294

6.6 Excitation of Resonators 297

The Coupling Coefficient and Critical Coupling 298

A Gap-Coupled Microstrip Resonator 299

An Aperture-Coupled Cavity 302

Determining Unloaded Q from Two-Port Measurements 305

6.7 Cavity Perturbations 306

Material Perturbations 306 Shape Perturbations 309

Contents xiii

7 POWER DIVIDERS AND DIRECTIONAL COUPLERS 317

7.1 Basic Properties of Dividers and Couplers 317

Three-Port Networks (T-Junctions) 318

Four-Port Networks (Directional Couplers) 320

7.2 The T-Junction Power Divider 324

Lossless Divider 324 Resistive Divider 326

7.3 The Wilkinson Power Divider 328

Even-Odd Mode Analysis 328

Unequal Power Division and N-Way Wilkinson Dividers 332

7.4 Waveguide Directional Couplers 333

Bethe Hole Coupler 334 Design of Multihole Couplers 338

7.5 The Quadrature (90◦) Hybrid 343

Even-Odd Mode Analysis 344

7.6 Coupled Line Directional Couplers 347

Coupled Line Theory 347 Design of Coupled Line Couplers 351

Design of Multisection Coupled Line Couplers 356

7.7 The Lange Coupler 359

7.8 The 180◦ Hybrid 362

Even-Odd Mode Analysis of the Ring Hybrid 364

Even-Odd Mode Analysis of the Tapered Coupled Line Hybrid 367

Waveguide Magic-T 371

7.9 Other Couplers 372

8 MICROWAVE FILTERS 380

8.1 Periodic Structures 381

Analysis of Infinite Periodic Structures 382

Terminated Periodic Structures 384

k-β Diagrams and Wave Velocities 385

8.2 Filter Design by the Image Parameter Method 388

Image Impedances and Transfer Functions for Two-Port Networks 388

Constant-k Filter Sections 390 m-Derived Filter Sections 393

Composite Filters 396

8.3 Filter Design by the Insertion Loss Method 399

Characterization by Power Loss Ratio 399

Maximally Flat Low-Pass Filter Prototype 402

Equal-Ripple Low-Pass Filter Prototype 404

Linear Phase Low-Pass Filter Prototypes 406

8.4 Filter Transformations 408

Impedance and Frequency Scaling 408

Bandpass and Bandstop Transformations 411

xiv Contents

8.5 Filter Implementation 415

Richards’ Transformation 416 Kuroda’s Identities 416

Impedance and Admittance Inverters 421

8.6 Stepped-Impedance Low-Pass Filters 422

Approximate Equivalent Circuits for Short Transmission Line Sections 422

8.7 Coupled Line Filters 426

Filter Properties of a Coupled Line Section 426

Design of Coupled Line Bandpass Filters 430

8.8 Filters Using Coupled Resonators 437

Bandstop and Bandpass Filters Using Quarter-Wave Resonators 437

Bandpass Filters Using Capacitively Coupled Series Resonators 441

Bandpass Filters Using Capacitively Coupled Shunt Resonators 443

9 THEORY AND DESIGN OF FERRIMAGNETIC COMPONENTS 451

9.1 Basic Properties of Ferrimagnetic Materials 452

The Permeability Tensor 452 Circularly Polarized Fields 458

Effect of Loss 460 Demagnetization Factors 462

9.2 Plane Wave Propagation in a Ferrite Medium 465

Propagation in Direction of Bias (Faraday Rotation) 465

Propagation Transverse to Bias (Birefringence) 469

9.3 Propagation in a Ferrite-Loaded Rectangular Waveguide 471

TEm0 Modes of Waveguide with a Single Ferrite Slab 471

TEm0 Modes of Waveguide with Two Symmetrical Ferrite Slabs 474

9.4 Ferrite Isolators 475

Resonance Isolators 476 The Field Displacement Isolator 479

9.5 Ferrite Phase Shifters 482

Nonreciprocal Latching Phase Shifter 482

Other Types of Ferrite Phase Shifters 485 The Gyrator 486

9.6 Ferrite Circulators 487

Properties of a Mismatched Circulator 488 Junction Circulator 488

10 NOISE AND NONLINEAR DISTORTION 496

10.1 Noise in Microwave Circuits 496

Dynamic Range and Sources of Noise 497

Noise Power and Equivalent Noise Temperature 498

Measurement of Noise Temperature 501

10.2 Noise Figure 502

Definition of Noise Figure 502 Noise Figure of a Cascaded System 504

Noise Figure of a Passive Two-Port Network 506

Noise Figure of a Mismatched Lossy Line 508

Noise Figure of a Mismatched Amplifier 510

Contents xv

10.3 Nonlinear Distortion 511

Gain Compression 512 Harmonic and Intermodulation Distortion 513

Third-Order Intercept Point 515 Intercept Point of a Cascaded System 516

Passive Intermodulation 519

10.4 Dynamic Range 519

Linear and Spurious Free Dynamic Range 519

11 ACTIVE RF AND MICROWAVE DEVICES 524

11.1 Diodes and Diode Circuits 525

Schottky Diodes and Detectors 525

PIN Diodes and Control Circuits 530

Varactor Diodes 537 Other Diodes 538 Power Combining 539

11.2 Bipolar Junction Transistors 540

Bipolar Junction Transistor 540 Heterojunction Bipolar Transistor 542

11.3 Field Effect Transistors 543

Metal Semiconductor Field Effect Transistor 544

Metal Oxide Semiconductor Field Effect Transistor 546

High Electron Mobility Transistor 546

11.4 Microwave Integrated Circuits 547

Hybrid Microwave Integrated Circuits 548

Monolithic Microwave Integrated Circuits 548

11.5 Microwave Tubes 552

12 MICROWAVE AMPLIFIER DESIGN 558

12.1 Two-Port Power Gains 558

Definitions of Two-Port Power Gains 559

Further Discussion of Two-Port Power Gains 562

12.2 Stability 564

Stability Circles 564 Tests for Unconditional Stability 567

12.3 Single-Stage Transistor Amplifier Design 571

Design for Maximum Gain (Conjugate Matching) 571

Constant-Gain Circles and Design for Specified Gain 575

Low-Noise Amplifier Design 580 Low-Noise MOSFET Amplifier 582

12.4 Broadband Transistor Amplifier Design 585

Balanced Amplifiers 586 Distributed Amplifiers 588

Differential Amplifiers 593

12.5 Power Amplifiers 596

Characteristics of Power Amplifiers and Amplifier Classes 597

Large-Signal Characterization of Transistors 598

Design of Class A Power Amplifiers 599

xvi Contents

13 OSCILLATORS AND MIXERS 604

13.1 RF Oscillators 605

General Analysis 606 Oscillators Using a Common Emitter BJT 607

Oscillators Using a Common Gate FET 609 Practical Considerations 610

Crystal Oscillators 612

13.2 Microwave Oscillators 613

Transistor Oscillators 615 Dielectric Resonator Oscillators 617

13.3 Oscillator Phase Noise 622

Representation of Phase Noise 623

Leeson’s Model for Oscillator Phase Noise 624

13.4 Frequency Multipliers 627

Reactive Diode Multipliers (Manley–Rowe Relations) 628

Resistive Diode Multipliers 631 Transistor Multipliers 633

13.5 Mixers 637

Mixer Characteristics 637 Single-Ended Diode Mixer 642

Single-Ended FET Mixer 643 Balanced Mixer 646

Image Reject Mixer 649

Differential FET Mixer and Gilbert Cell Mixer 650 Other Mixers 652

14 INTRODUCTION TO MICROWAVE SYSTEMS 658

14.1 System Aspects of Antennas 658

Fields and Power Radiated by an Antenna 660

Antenna Pattern Characteristics 662

Antenna Gain and Efficiency 664

Aperture Efficiency and Effective Area 665

Background and Brightness Temperature 666

Antenna Noise Temperature and G/T 669

14.2 Wireless Communications 671

The Friis Formula 673

Link Budget and Link Margin 674

Radio Receiver Architectures 676

Noise Characterization of a Receiver 679

Digital Modulation and Bit Error Rate 681

Wireless Communication Systems 684

14.3 Radar Systems 690

The Radar Equation 691 Pulse Radar 693 Doppler Radar 694

Radar Cross Section 695

14.4 Radiometer Systems 696

Theory and Applications of Radiometry 697 Total Power Radiometer 699

The Dicke Radiometer 700

14.5 Microwave Propagation 701

Atmospheric Effects 701 Ground Effects 703 Plasma Effects 704

Contents xvii

14.6 Other Applications and Topics 705

Microwave Heating 705 Power Transfer 705

Biological Effects and Safety 706

APPENDICES 712

A Prefixes 713

B Vector Analysis 713

C Bessel Functions 715

D Other Mathematical Results 718

E Physical Constants 718

F Conductivities for Some Materials 719

G Dielectric Constants and Loss Tangents for Some Materials 719

H Properties of Some Microwave Ferrite Materials 720

I Standard Rectangular Waveguide Data 720

J Standard Coaxial Cable Data 721

ANSWERS TO SELECTED PROBLEMS 722

INDEX 725





已有6人评分微元 威望 理由
huishouzhong + 50 很给力!
greg + 50 很给力!好书呀,感谢呆呆同学,感谢pozar,.
augusta + 50 很给力!
sunjie1234 + 50 新书全加满分
delilah + 50 楼主是个大好人^^
bandwidth + 1 很给力!

查看全部评分 总评分:微元 +250  威望 +1 

以己之微·网博天下:博览微网之术·创造成功之路!

举报 使用道具

回复

380 个评论

00d44  管理员  发表于 2012-3-11 02:22:09  | 显示全部楼层
觉得给力的,顶贴支持哈
游客,如果您要查看本帖隐藏内容请回复








以己之微·网博天下:博览微网之术·创造成功之路!
burton  上校  发表于 2012-3-11 07:37:28  | 显示全部楼层
确实给力,谢谢
以己之微·网博天下:博览微网之术·创造成功之路!
littlemage78  少校  发表于 2012-3-11 08:35:11  | 显示全部楼层
这个不仅是给力吧,是震撼了。
以己之微·网博天下:博览微网之术·创造成功之路!
wangjiafu1985  少校  发表于 2012-3-11 09:15:48  | 显示全部楼层
居然是新书。。。。
以己之微·网博天下:博览微网之术·创造成功之路!
tintin2005  少尉  发表于 2012-3-11 09:30:14  | 显示全部楼层
太棒了!
以己之微·网博天下:博览微网之术·创造成功之路!
littlemage78  少校  发表于 2012-3-11 09:33:51  | 显示全部楼层
很给力,口水直流,就是太大,网速不给力,下不来{:soso_e118:}

点评

经测试可以完整下载,请大家选择网速给力的时候下载大附件!谢谢  详情 回复 发表于 2012-3-12 22:41
以己之微·网博天下:博览微网之术·创造成功之路!
littlemage78  少校  发表于 2012-3-11 09:33:55  | 显示全部楼层
很给力,口水直流,就是太大,网速不给力,下不来{:soso_e118:}
以己之微·网博天下:博览微网之术·创造成功之路!
bo8308  士官⑥  发表于 2012-3-11 09:36:26  | 显示全部楼层
{:7_1234:}{:7_1234:}{:7_1234:}{:7_1234:}
以己之微·网博天下:博览微网之术·创造成功之路!
*滑动验证:
您需要登录后才可以回帖 登录 | 注册会员 微信登录

本版积分规则

图文热点

更多

社区学堂

更多

客服中心

1588-1101-905 周一至周日 8:30-20:30 仅收市话费

关注我们

  • 手机客户端
  • 关注官方微信
发布主题 快速回复 客服中心 搜索
关于我们
关于我们
建议反馈
联系我们
旗下网站
微网社区
微网博客
微网人才
服务支持
资源下载
广告服务
定制流程
关注我们
新浪微博
官方空间
官方微信
快速回复 返回顶部 返回列表