搜索附件  
头雁微网 附件中心 后勤保障 档案室 optical antennas: optical_antennas.pdf
板块导航
附件中心&附件聚合2.0
For Discuz! X3.5 © hgcad.com

optical antennas: optical_antennas.pdf

 

optical antennas:


Optical Antennas
This consistent and systematic review of recent advances in optical antenna theory and practice brings together leading experts in the fields of electrical
engineering, nano-optics and nano-photonics, physical chemistry, and nanofabrication.Fundamental concepts and functionalities relevant to optical antennas are explained, together with key principles for optical antenna modeling, design and characterization. Recognizing the tremendous potential of this technology, practical applications are also outlined.
Presenting a clear translation of the concepts of radio antenna design, nearfield optics and field-enhanced spectroscopy into optical antennas, this interdisciplinary book is an indispensable resource for researchers and graduate students in engineering, optics and photonics, physics, and chemistry.

Mario Agio is a Senior Researcher at the National Institute of Optics (INO-CNR) and the European Laboratory for Non-Linear Spectroscopy (LENS), Florence,Italy. His research interests focus on single molecule spectroscopy and optical nanoscopy, quantum- and nonlinear-optics in photonic nanostructures, plasmonics,and metamaterials. He has been awarded the Latsis-Prize of ETH Zurich for his significant contributions to the field of theoretical nano-optics.

Andrea Al`u is an Assistant Professor at the University of Texas, Austin, whose research interests span metamaterials and plasmonics, miniaturized antennas and nanoantennas, nanocircuits and nanostructure modeling. He has received the 2012 SPIE Early Career Achievement Award, and the 2011 URSI Issac Koga Gold Medal for his contributions to the theory and application of electromagnetic metamaterials.



cambridge university press
Cambridge, New York, Melbourne, Madrid,
Cape Town Singapore, S˜ao Paulo, Delhi, Mexico City
Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK
Published in the United States of America by Cambridge University Press, New York
www.cambridge.org
Information on this title: www.cambridge.org/9781107014145
c
Cambridge University Press 2013
This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.
First published 2013
Printed and bound in the United Kingdom by the MPG Books Group
A catalogue record for this publication is available from the British Library
Library of Congress Cataloguing in Publication data
Optical antennas / [edited by] Mario Agio, European Laboratory for Nonlinear Spectroscopy
(LENS), Florence, Italy: Andrea Al`u, University of Texas, Austin, USA.
pages cm
Includes bibliographical references.
ISBN 978-1-107-01414-5 (Hardback)
1. Optical antennas. 2. Nanophotonics. I. Agio, Mario, editor of compilation.
II. Al`u, Andrea, editor of compilation.
TK8360.O65O68 2013
621.365–dc23
2012032866
ISBN 978-1-107-01414-5 Hardback
Cambridge University Press has no responsibility for the persistence or
accuracy of URLs for external or third-party internet websites referred to
in this publication, and does not guarantee that any content on such
websites is, or will remain, accurate or appropriate.
Contents
Preface page xv
List of contributors xviii
Notation xxii
Part I FUNDAMENTALS 1
1 From near-field optics to optical antennas 3
D. Pohl
1.1 The near-field 3
1.2 Energies and photons 4
1.3 Foundations of near-field optical microscopy 5
1.4 Scanning near-field optical microscopy 5
1.5 Problems of near-field optical microscopy 7
1.6 From near-field optical microscopy to optical antennas 8
1.7 Optical antennas 8
1.8 Conclusions and outlook 10
2 Optical antenna theory, design and applications 11
A. Al`u and N. Engheta
2.1 Introduction 11
2.2 Nanoantennas and optical nanocircuits 12
2.2.1 Optical nanocircuit theory 13
2.2.2 Nanoantennas as optical lumped elements 14
2.2.3 Other quantities of interest for optical antenna operation 17
2.3 Loading, tuning and matching optical antennas 18
2.3.1 Loading, impedance matching and optical wireless links 18
2.3.2 Optimizing bandwidth and sensitivity with nanoloads 21
2.3.3 Optical nonlinearities as variable nanoloads 24
2.4 Conclusions and outlook 25
3 Impedance of a nanoantenna 26
F. Marquier and J.-J. Greffet
3.1 Introduction 26
3.2 Impedance of a nanoantenna 27
viii Contents
3.2.1 Definition 27
3.2.2 A vacuum 28
3.2.3 A microcavity 30
3.2.4 A dipolar nanoantenna 31
3.2.5 Comparison of a microcavity and a nanoantenna 32
3.2.6 Ohmic and radiative losses 33
3.3 Impedance of a quantum emitter 34
3.3.1 A two-level system 34
3.3.2 Impedance and multiple scattering 36
3.4 Applications 37
3.4.1 Weak coupling and strong coupling 37
3.4.2 Conjugate impedance matching condition 41
3.4.3 Maximum absorption by a metallic nanoparticle 42
3.4.4 Fluorescence enhancement by metallic nanoparticles 43
3.5 Conclusions 45
4 Where high-frequency engineering advances optics. Active
nanoparticles as nanoantennas 46
R. W. Ziolkowski, S. Arslanagi´c and J. Geng
4.1 Introduction 46
4.2 Coated nanoparticles as active nanoantennas 50
4.2.1 Configuration 50
4.2.2 Theory 51
4.2.3 Coated-nanoparticle materials and gain models 52
4.3 Results and discussion 53
4.3.1 Far-field results 54
4.3.2 Near-field results 54
4.3.3 Influence of the dipole location 56
4.3.4 Additional effects – transparency 58
4.3.5 Additional coated-nanoparticle cases 59
4.4 Open coated nanocylinders as active nanoantennas 60
4.4.1 Nanoparticle model 60
4.4.2 Results and discussion 61
4.5 Conclusions 63
5 Optical antennas for field-enhanced spectroscopy 64
J. Aizpurua and R. Esteban
5.1 Introduction 64
5.1.1 Field enhancement 64
5.1.2 Spectral response 65
5.1.3 Shape 67
5.1.4 Basic ingredients to increase the field 69
5.2 Surface-enhanced Raman scattering 73
5.3 Surface-enhanced infrared absorption 75
Contents ix
5.4 Metal-enhanced fluorescence 76
5.5 Quantum effects in nanoantennas 79
6 Directionality, polarization and enhancement by optical antennas 81
N. F. van Hulst, T. H. Taminiau and A. G. Curto
6.1 Introduction 81
6.1.1 Optical antennas 81
6.1.2 Interaction with single emitters 84
6.1.3 Resonant coupling of antenna and emitter 87
6.2 Local excitation by optical antennas 89
6.2.1 Single emitters as near-field probes 89
6.2.2 The monopole antenna case 89
6.3 Emission control by optical antennas 93
6.3.1 Polarization of single molecule emission 93
6.3.2 Directionality of single molecule emission 96
6.4 Conclusions and outlook 99
7 Antennas, quantum optics and near-field microscopy 100
V. Sandoghdar, M. Agio, X.-W. Chen, S. G¨otzinger and K.-G. Lee
7.1 Introduction 100
7.2 Microcavities 103
7.3 Antennas 104
7.3.1 Small antennas 105
7.3.2 Planar antennas 107
7.4 Modification of the spontaneous emission rate 107
7.4.1 Planar antennas 107
7.4.2 Microcavities 108
7.4.3 Plasmonic nanoantennas 109
7.4.4 Metallo-dielectric hybrid antennas 111
7.5 Generation of single photons and directional emission 113
7.5.1 Microcavities 113
7.5.2 Plasmonic nanoantennas 113
7.5.3 Planar antennas 114
7.6 Antennas immersed in vacuum fluctuations: Casimir
and van der Waals interactions 116
7.7 Scanning near-field optical microscopy 118
7.8 Outlook 120
8 Nonlinear optical antennas 122
H. Harutyunyan, G. Volpe and L. Novotny
8.1 Introduction 122
8.2 Design fundamentals 123
8.2.1 Origin of optical nonlinearities in nanoantennas 123
8.2.2 Nonlinear susceptibilities of optical materials 126
x Contents
8.3 Nonlinearities in single nanoparticles 127
8.3.1 Nanoscale and macroscale nonlinear phenomena 127
8.3.2 Symmetry considerations on the nanoscale 128
8.3.3 Nonlinear polarization in nanoparticles 128
8.4 Nonlinearities in coupled antennas and arrays 129
8.4.1 Enhancement of metal nonlinearities 130
8.4.2 Enhancement of nonlinearities in surrounding media 131
8.4.3 TPL nonlinear microscopy of coupled particles 132
8.5 Conclusions and outlook 133
9 Coherent control of nano-optical excitations 135
W. Pfeiffer, M. Aeschlimann and T. Brixner
9.1 Introduction 135
9.2 Local-field control principles 138
9.2.1 Fundamental quantities 139
9.2.2 Spectral enhancement 140
9.2.3 Local polarization-mode interference 142
9.2.4 Local pulse compression 143
9.2.5 Optimal control 144
9.2.6 Analytic optimal control rules 146
9.2.7 Time reversal 148
9.2.8 Spatially shaped excitation fields 149
9.3 Local-field control examples 150
9.3.1 Spatial excitation control 150
9.3.2 Spatiotemporal excitation control 152
9.3.3 Propagation control 153
9.4 Applications 154
9.4.1 Space–time-resolved spectroscopy 154
9.4.2 Coherent two-dimensional nanoscopy 155
9.4.3 Unconventional excitations 155
9.5 Conclusions and outlook 156
Part II MODELING, DESIGN AND CHARACTERIZATION 157
10 Computational electrodynamics for optical antennas 159
O. J. F. Martin
10.1 Introduction 159
10.2 The numerical solution of Maxwell equations 160
10.2.1 Finite-difference time-domain method 161
10.2.2 Finite-differences method 162
10.2.3 Finite-elements method 163
10.2.4 Volume integral-equation method 165
10.2.5 Boundary-element method 166
Contents xi
10.3 Validity checks 168
10.4 Modeling realistic optical antennas 169
10.5 Tuning the antenna properties 171
10.6 Conclusions and outlook 174
11 First-principles simulations of near-field effects 175
J. L. Payton, S. M. Morton and L. Jensen
11.1 Introduction 175
11.2 Quantum effects on the near-field 177
11.3 Plasmon–exciton hybridization 181
11.4 Near-field effects on spectroscopy 187
11.4.1 Surface-enhanced Raman scattering 188
11.4.2 Surface-enhanced fluorescence 191
11.5 Near-field effects on molecular photochemistry 192
11.5.1 Early examples of photochemistry 193
11.5.2 Photochemical enhancement mechanism 193
11.6 Conclusions and outlook 196
12 Field distribution near optical antennas at the subnanometer scale 197
C. Pecharrom´an
12.1 Introduction 197
12.2 Theoretical background 199
12.3 Results 203
12.3.1 Sphere dimers 203
12.3.2 Nano-rods 207
12.3.3 Cylinders 209
12.4 Enhancement and localization versus distance in particle dimers 211
12.5 Conclusions 213
13 Fabrication and optical characterization of nanoantennas 215
J. Prangsma, P. Biagioni and B. Hecht
13.1 Introduction 215
13.2 Fabrication of single-crystalline antennas 216
13.2.1 Role of the dielectric function 217
13.2.2 Effects of geometry and multicrystallinity 219
13.2.3 Fabrication issues 220
13.2.4 Single-crystalline nanostructures 221
13.3 Optical characterization of nanoantennas 223
13.3.1 Far-field scattering 223
13.3.2 Determining the near-field intensity enhancement 224
13.3.3 Emission directivity and coupling to quantum emitters 230
13.4 Conclusions and outlook 232
xii Contents
14 Probing and imaging of optical antennas with PEEM 234
P. Melchior, D. Bayer and M. Aeschlimann
14.1 Introduction 234
14.2 Photoemission electron microscopy 236
14.2.1 Instrumental setup 236
14.2.2 The photoemission process 238
14.3 Near-field investigation of nanostructured surfaces 240
14.3.1 Local near-field mapping 240
14.3.2 Imaging of surface plasmon polaritons 244
14.3.3 Observing and controlling the near-field distribution 244
14.3.4 Nonlinearities on structured surfaces 247
14.4 Time-resolved two-photon photoemission 248
14.4.1 Phase-averaged time-resolved PEEM 250
14.4.2 Phase-resolved PEEM 252
14.5 Other potential applications 253
14.5.1 Attosecond nanoplasmonic field microscope 253
14.5.2 Magneto-plasmonics 253
14.6 Conclusions and outlook 254
15 Fabrication, characterization and applications of optical
antenna arrays 256
D. Dregely, J. Dorfm¨uller, M. Hentschel and H. Giessen
15.1 Introduction 256
15.2 Theory of antenna arrays 257
15.2.1 The array factor 257
15.2.2 Two-dimensional planar arrays and phased arrays 259
15.2.3 Directionality enhancement 260
15.3 Differences between RF and optical antenna arrays 261
15.3.1 Effective antenna length 261
15.3.2 Differences in antenna emission patterns 262
15.3.3 Antenna losses 262
15.4 The optical Yagi–Uda antenna – linear array of plasmonic dipoles 262
15.4.1 Fabrication and characterization of transmitting optical
Yagi–Uda antennas 264
15.4.2 Design of receiving optical Yagi–Uda antennas 264
15.4.3 Characterization of receiving optical Yagi–Uda antenna 265
15.5 Two-dimensional arrays of optical antennas 268
15.5.1 Characterization of planar optical antenna arrays 268
15.5.2 Fabricating three-dimensional nanoantennas 270
15.5.3 Optical properties 271
15.5.4 Experimental characterization 272
15.6 Applications of optical antenna arrays 274
15.6.1 Phased arrays for optical wavelengths 275
15.6.2 Optical antenna links 276
Contents xiii
16 Novel fabrication methods for optical antennas 277
W. Zhou, J. Y. Suh and T. W. Odom
16.1 Introduction 277
16.2 Conventional methods to create nanoantennas 279
16.3 Soft nanolithography 280
16.3.1 Master 281
16.3.2 Elastomeric mask 281
16.3.3 Nanopatterned template 281
16.3.4 Optical antenna arrays 282
16.4 Strongly coupled nanoparticle arrays 283
16.5 Metal–insulator–metal nanocavity arrays 285
16.6 Three-dimensional bowtie antenna arrays 289
16.7 Conclusions and outlook 293
17 Plasmonic properties of colloidal clusters: towards new
metamaterials and optical circuits 294
J. A. Fan and F. Capasso
17.1 Introduction 294
17.2 Self-assembled magnetic clusters 295
17.3 Plasmonic Fano-like resonances 303
17.4 DNA cluster assembly 311
17.5 Conclusions and outlook 316
Part III APPLICATIONS 319
18 Optical antennas for information technology and energy harvesting 321
M. L. Brongersma
18.1 Introduction 321
18.2 Coupling plasmonic antennas to semiconductors 322
18.3 Plasmonic antennas for information technology and energy
harvesting 332
18.4 Operation of semiconductor-based optical antennas 334
18.5 Semiconductor antennas for information technology and energy
harvesting 336
18.6 Conclusions and outlook 338
19 Nanoantennas for refractive-index sensing 340
T. Shegai, M. Svedendahl, S. Chen. A. Dahlin and M. K¨all
19.1 Introduction 340
19.2 An overview of plasmonic sensing 342
19.2.1 Bulk sensitivity 342
19.2.2 Molecular sensing 347
19.3 Recent trends in plasmonic sensing 351
19.3.1 Fano resonances 351
xiv Contents
19.3.2 Alternative sensing schemes 353
19.3.3 Sensing with nanoholes 354
19.3.4 Plasmonic sensing for materials science 354
19.4 Conclusions and outlook 355
20 Nanoimaging with optical antennas 356
P. Verma and Y. Saito
20.1 Introduction 356
20.2 The diffraction limit and spatial resolution 357
20.3 Evanescent waves and metals 358
20.3.1 Excitation of surface plasmon-polaritons with light 359
20.3.2 Optical antennas 359
20.4 Tip-enhanced Raman spectroscopy 360
20.4.1 Spatial resolution in TERS 362
20.4.2 Imaging intrinsic properties through TERS 363
20.5 Further improvement in imaging through optical antennas 364
20.5.1 Combining optical antennas with mechanical effects 364
20.6 Optical antennas as nanolenses 366
20.7 Conclusions and outlook 367
21 Aperture optical antennas 369
J. Wenger
21.1 Introduction 369
21.2 Enhanced light–matter interaction on nanoaperture antennas 370
21.2.1 Single apertures 370
21.2.2 Single apertures surrounded by surface corrugations 372
21.2.3 Aperture arrays 374
21.3 Biophotonic applications of nanoaperture antennas 376
21.3.1 Enhanced fluorescence detection and analysis 376
21.3.2 Molecular sensing and spectroscopy with aperture arrays 380
21.4 Nanophotonic applications of nanoaperture antennas 383
21.4.1 Photodetectors and filters 383
21.4.2 Nanosources 383
21.5 Conclusions 385
References 387
Index 446
还以为有电子书呢~
本帖最后由 bandwidth 于 2014-5-5 16:11 编辑

ص

多谢分享新书
如此好书  不顶怎行
Thanks a lot!!!
thank a lot
看看。。谢谢分享
谢谢楼主分享!
谢谢楼主!
好人,好书!
Thanks a lot!!!
谢谢分享!
多谢分享!
多谢分享
optical antennas 下来看看
顶一顶,好书1
好书啊,哪里能下载到呢
谢谢楼主
以前貌似下载过。
good book
Thanks
的世博会各分行牛肉面红
谢谢楼主
websites is, or will remain, accurate or appropriate
客服中心 搜索
关于我们
关于我们
关注我们
联系我们
帮助中心
资讯中心
企业生态
社区论坛
服务支持
资源下载
售后服务
推广服务
关注我们
官方微博
官方空间
官方微信
返回顶部