搜索附件  
头雁微网 附件中心 技术应用 情报信息 PML for computational electromagnetics: PML for computational electromagnetics.pdf
板块导航
附件中心&附件聚合2.0
For Discuz! X3.5 © hgcad.com

PML for computational electromagnetics: PML for computational electromagnetics.pdf

 

PML for computational electromagnetics:
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1. The Requirements for the Simulation of Free Space and a Review of Existing
Absorbing Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1 The Maxwell Equations and the Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 The Actual Problems to be Solved with Numerical Methods . . . . . . . . . . . . . . . . . .7
1.3 The Requirements to be Satisfied by the Absorbing Boundary Conditions . . . . . 8
1.4 The Existing ABCs before the Introduction of the PML ABC . . . . . . . . . . . . . . . 9
2. The Two-Dimensional PerfectlyMatched Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1 A Medium without Reflection at Normal and Grazing Incidences . . . . . . . . . . . .13
2.2 The PML Medium in the 2D TE Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Reflection ofWaves from a Vacuum–PML Interface and from a
PML–PML Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
2.4 The Perfectly Matched Layer Absorbing Boundary Condition . . . . . . . . . . . . . . . 21
2.5 EvanescentWaves in PML Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3. Generalizations and Interpretations of the PerfectlyMatched Layer . . . . . . . . . . . . . 29
3.1 The Three-Dimensional PML Matched to a Vacuum . . . . . . . . . . . . . . . . . . . . . . 29
3.2 The Three-Dimensional PML Absorbing Boundary Condition. . . . . . . . . . . . . .35
3.3 Interpretation of the PML Medium in Terms of Stretched Coordinates . . . . . . 36
3.4 Interpretation in Terms of Dependent Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5 The PML Matched to General Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.6 The PML Matched to Nonhomogeneous Media . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.7 The Uniaxial PML Medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.8 The Complex Frequency Shifted PML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4. Time Domain Equations for the PMLMedium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.1 Time Domain PML Matched to a Vacuum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.1.1 The Split PML. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.1.2 The Convolutional PML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.1.3 The Near PML. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
4.1.4 The Uniaxial PML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
vi PERFECTLYMATCHED LAYER (PML) FOR COMPUTATIONAL ELECTROMAGNETICS
4.2 Time Domain PML for Lossy Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2.1 Split PML for Lossy Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
4.2.2 CPML for Lossy Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.3 NPML for Lossy Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.4 Uniaxial PML for Lossy Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3 Time Domain PML for Anisotropic Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3.1 Split PML for Anisotropic Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3.2 CPML for Anisotropic Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.3 NPML for Anisotropic Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.4 Time Domain PML for Dispersive Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.4.1 Time Domain CPML and NPML for Isotropic or
Anisotropic Dispersive Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.4.2 Time Domain Uniaxial PML for Isotropic Dispersive Media. . . . . . . . .61
5. The PML ABC for the FDTDMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.1 FDTD Schemes for the PML Matched to a Vacuum . . . . . . . . . . . . . . . . . . . . . . . 63
5.1.1 FDTD Scheme for the Split PML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.1.2 FDTD Scheme for the Convolutional PML. . . . . . . . . . . . . . . . . . . . . . . . 65
5.1.3 FDTD Scheme for the NPML. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
5.1.4 FDTD Scheme for the Uniaxial PML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.1.5 A Comparison of the Requirements of the Different Versions
of the PML ABC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 FDTD Schemes for PMLs Matched to Lossy Isotropic Media . . . . . . . . . . . . . . 68
5.3 FDTD Schemes for PMLs Matched to Anisotropic Media . . . . . . . . . . . . . . . . . .69
5.4 FDTD Schemes for PMLs Matched to Dispersive Media . . . . . . . . . . . . . . . . . . . 70
5.5 Profiles of Conductivity in the PML ABC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.6 The PML ABC in the Discretized FDTD Space . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.6.1 Propagation of PlaneWaves in the Split FDTD-PML . . . . . . . . . . . . . . 75
5.6.2 Reflection from a PML–PML Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
5.6.3 Reflection from a N-Cell-Thick PML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.6.4 Reflection from the CPML, the NPML, and the Uniaxial PML . . . . . 85
5.6.5 Reflection from the CFS-PML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6. Optmization of the PML ABC inWave-Structure Interaction and
Waveguide Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.1 Wave-Structure Interaction Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.1.1 The General Shape of the Results Computed with a PML Placed
Close to a Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
CONTENTS vii
6.1.2 Interpretation of the Numerical Reflection . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.1.3 Design of the PML Using a Regular Stretching Factor . . . . . . . . . . . . . . 93
6.1.4 Design of the PML Using the CFS Stretching Factor . . . . . . . . . . . . . . . 95
6.2 Waveguide Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.2.1 Improvement of the Absorption by Means of a Real
Stretch of Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.2.2 Improvement of the Absorption by Using a CFS
Stretching Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.3 Concluding Remarks to the Application of the PML ABC to
FDTD Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105
7. Some Extensions of the PML ABC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.1 The Perfectly Matched Layer in Other Systems of Coordinates . . . . . . . . . . . . . 107
7.2 The Perfectly Matched Layer with Other Numerical Techniques . . . . . . . . . . . 107
7.3 Use of the Perfectly Matched Layer with Other Equations of Physics . . . . . . . 109
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Author Biography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

ص





:16bb:21bb:52bb
:16bb谢谢分享!!
:16bb谢谢分享!!
谢谢lz分享
呵呵,谢谢
谢谢分享!!
下来看看!!谢谢楼主!!
看看,maxwell啊
谢谢分享
PML worthes the push
下来看看!!谢谢下来看看!!谢谢
看那看学习一下
very good!!!
下来看看
thankssssssssssss
不错哦!!!!
看看。
好东西下来看看
thanks~~
这是论文吗?谢谢楼主
下来看看啊
我回复了很多很多回了
很好的书,谢谢分享!
谢谢分享!!
非常感谢分享
谢谢分享
谢谢分享....
啥也不说了,楼主就是给力!
好书,你们是如何弄到的?
下来看看!
good book
围观,学习
为供热供热供热GV染头发
客服中心 搜索
关于我们
关于我们
关注我们
联系我们
帮助中心
资讯中心
企业生态
社区论坛
服务支持
资源下载
售后服务
推广服务
关注我们
官方微博
官方空间
官方微信
返回顶部