搜索附件  
头雁微网 附件中心 技术应用 情报信息 组合 8.pdf
板块导航
附件中心&附件聚合2.0
For Discuz! X3.5 © hgcad.com

组合 8.pdf

 

求书一本:
Microwave Filters for Communication Systems
Microwave filters for communication systems:Fundamentals,Design,and Applicattion
是不是这本书啊,好像论坛里目前还没有
本帖最后由 huangfeihong88 于 2009-9-2 10:36 编辑

贼难找的一本好书啊!哈哈
这个网站好像有,但是进不去啊!http://rapidlibrary.com/index.php?q=Microwave+filters+for+communication+systems%3AFundamentals%2CDesign%2Cand+Applicattion&filetype=0
网上好像还没有电子版,我是从图书馆借来的,厚厚的一本大部头。
Wiley List Price:  US $145.00
Brochure
More information from http://www.researchandmarkets.com/reports/563479/
Microwave Filters for Communication Systems : Fundamentals,
Design and Applications
Description: There have been significant advances in the synthesis and physical realization of microwave filter
networks over the last three decades. There is currently no book that provides a coherent and
readable description of system requirements and constraints for microwave filters, fundamental
considerations in the theory and design of microwave filters, up-to-date modern synthesis
techniques with examples and technology considerations in the choice of hardware. This book
would fill such a gap.
Author Info:
Richard J. Cameron - Technical Director, COM DEV International, Fellow of IEEE, over 30 years of
industrial experience in microwave filter design. Dr. Chandra M. Kudsia - President, Mantrix Inc.,
recently retired Chief Scientist, COM DEV Space Group, adjunct professor, University of Waterloo,
Fellow of IEEE and AIAA. Over 35 years of experience in the field of microwave filters and
multiplexers, and satellite system design. Dr. Raafat R. Mansour - Professor, University of
Waterloo, former director of R&D, COM DEV International, Fellow of IEEE, over 20 years of
experience in the application of electromagnetic techniques to realize microwave filters and passive
components.
Contents: Foreword.
Preface.
Acknowledgments.
1. Radio Frequency (RF) Filter Networks for Wireless Communications-The System Perspective.
PART I: INTRODUCTION TO A COMMUNICATION SYSTEM, RADIO SPECTRUM, AND INFORMATION.
PART II: NOISE IN A COMMUNICATION CHANNEL.
PART III: IMPACT OF SYSTEM DESIGN ON THE REQUIRMENTS OF FILTER NETWORKS.
2. Fundamentals of Circuit Theory Approximation.
3. Characterization of Lossless Lowpass Prototype filter functions.
4. Computer-Aided Synthesis of Characteristic Polynomials.
5. Analysis of Multiport Microwave Networks.
6. Synthesis of a General Class of the Chebyshev Filter Function.
7. Synthesis of Network - Circuit Approach.
8. Coupling Matrix Synthesis of Filter Networks.
9. Reconfiguration of the Folded Coupling Matrix.
10. Synthesis and Application of Extracted Pole and Trisection Elements.
11. Microwave Resonators.
12. Waveguide and Coaxial Lowpass Filters.
13. Waveguide Realization of Single- and Dual-Mode Resonator Filters.
据说中译本快出版了
An in-depth look at continuing advances in the field of microwave filters--the basic building blocks of any communication system

There have been significant advances in the synthesis and physical realization of microwave filter networks, but until now, no book has provided a coherent and readable description of system requirements and constraints, fundamental considerations in theory and design, up-to-date synthesis techniques, or EM-based design tools. Microwave Filters for Communication Systems fills the need for such a book, providing comprehensive coverage of microwave filter design and applications for communication systems.

Distinct features of the book include:

System considerations in filter design

General formulation and synthesis of filter functions

Synthesis techniques for low-pass prototype filters

Application of modern EM-based design techniques

Design and tradeoffs of various multiplexer configurations

Computer-aided filter tuning

High-power considerations for terrestrial and space applications

This topical book provides students and practitioners with a strong theoretical understanding of filter design, as well as the EM-based tools being used in the optimization of microwave filter and multiplexing networks.
FOREWORD  xxi  
PREFACE  xxiii  
ACKNOWLEDGMENTS  xxxi  
1 RADIO FREQUENCY (RF) FILTER NETWORKS FOR WIRELESS COMMUNICATIONSùTHE SYSTEM PERSPECTIVE
  1  
Part I Introduction to a Communication System, Radio Spectrum, and Information
  2  
1.1 Model of a Communication System
  2  
1.1.1 Building Blocks of a Communication System
  3  
1.2 Radio Spectrum and its Utilization
  7  
1.2.1 Radio Propagation at Microwave Frequencies
  7  
1.2.2 Radio Spectrum as a Natural Resource
  9  
1.3 Concept of Information
  10  
1.4 Communication Channel and Link Budgets
  12  
1.4.1 Signal Power in a Communication Link
  12  
1.4.2 Transmit and Receive Antennas
  13  
Part II Noise in a Communication Channel
  18  
1.5 Noise in Communication Systems
  18  
1.5.1 Adjacent Copolarized Channel Interference
  18  
1.5.2 Adjacent Cross-Polarized Channel Interference
  19  
1.5.3 Multipath Interference
  19  
1.5.4 Thermal Noise
  20  
1.5.5 Noise in Cascaded Networks
  26  
1.5.6 Intermodulation (IM) Noise
  29  
1.5.7 Distortion Due to Channel Imperfections
  31  
1.5.8 RF Link Design
  34  
1.6 ModulationûDemodulation Schemes in a Communication System
  37  
1.6.1 Amplitude Modulation
  37  
1.6.2 Formation of a Baseband Signal
  39  
1.6.3 Angle-Modulated Signals
  40  
1.6.4 Comparison of FM and AM Systems
  43  
1.7 Digital Transmission
  46  
1.7.1 Sampling
  46  
1.7.2 Quantization
  47  
1.7.3 PCM Systems
  47  
1.7.4 Quantization Noise in PCM Systems
  48  
1.7.5 Error Rates in Binary Transmission
  49  
1.7.6 Digital Modulation and Demodulation Schemes
  50  
1.7.7 Advanced Modulation Schemes
  53  
1.7.8 Quality of Service and SN Ratio
  58  
Part III Impact of System Design on the Requirements of Filter Networks
  58  
1.8 Communication Channels in a Satellite System
  58  
1.8.1 Receive Section
  61  
1.8.2 The Channelizer Section
  62  
1.8.3 High-Power Amplifiers (HPAs)
  64  
1.8.4 Transmitter Section Architecture
  67  
1.9 RF Filters in Cellular Systems
  71  
1.10 Impact of System Requirements on RF Filter Specifications
  74  
1.11 Impact of Satellite and Cellular Communications on Filter Technology
  77  
Summary
  78  
References
  78  
Appendix IA Intermodulation Distortion Summary
  80  
2 FUNDAMENTALS OF CIRCUIT THEORY APPROXIMATION
  83  
2.1 Linear Systems
  83  
2.1.1 Concept of Linearity
  84  
2.2 Classification of Systems
  84  
2.2.1 Time-Invariant and Time-Variant Systems
  85  
2.2.2 Lumped and Distributed Systems
  85  
2.2.3 Instantaneous and Dynamic Systems
  85  
2.2.4 Analog and Digital Systems
  85  
2.3 Evolution of Electrical CircuitsùA Historical Perspective
  86  
2.3.1 Circuit Elements
  86  
2.4 Network Equation of Linear Systems in the Time Domain
  87  
2.5 Network Equation of Linear Systems in the Frequency-Domain Exponential Driving Function
  89  
2.5.1 Complex Frequency Variable
  90  
2.5.2 Transfer Function
  91  
2.5.3 Signal Representation by Continuous Exponentials
  92  
2.5.4 Transfer Functions of Electrical Networks
  92  
2.6 Steady-State Response of Linear Systems to Sinusoidal Excitations
  93  
2.7 Circuit Theory Approximation
  94  
Summary
  96  
References
  96  
3 CHARACTERIZATION OF LOSSLESS LOWPASS PROTOTYPE FILTER FUNCTIONS
  97  
3.1 The Ideal Filter
  97  
3.1.1 Distortionless Transmission
  97  
3.1.2 Maximum Power Transfer in Two-Port Networks
  98  
3.2 Characterization of Polynomial Functions for Doubly Terminated Lossless Lowpass Prototype Filter Networks
  99  
3.2.1 Reflection and Transmission Coefficients
  101  
3.2.2 Normalization of the Characteristic Polynomials
  104  
3.3 Characteristic Polynomials for Idealized Lowpass Prototype Networks
  105  
3.4 Lowpass Prototype Characteristics
  107  
3.4.1 Amplitude Response
  107  
3.4.2 Phase Response
  107  
3.4.3 Phase Linearity
  108  
3.5 Characteristic Polynomials Versus Response Shapes
  109  
3.5.1 All-Pole Prototype Filter Functions
  109  
3.5.2 Prototype Filter Functions with Finite Transmission Zeros
  109  
3.6 Classical Prototype Filters
  111  
3.6.1 Maximally Flat Filters
  111  
3.6.2 Chebyshev Approximation
  112  
3.6.3 Elliptic Function Filters
  115  
3.6.4 Odd-Order Elliptic Function Filters
  118  
3.6.5 Even-Order Elliptic Function Filters
  119  
3.6.6 Filters with Transmission Zeros and a Maximally Flat Passband
  121  
3.6.7 Linear Phase Filters
  121  
3.6.8 Comparison of Maximally Flat, Chebyshev, and Elliptic Function Filters
  122  
3.7 Unified Design Chart (UDC) Relationships
  123  
3.7.1 Ripple Factor
  124  
3.8 Lowpass Prototype Circuit Configurations
  125  
3.8.1 Scaling of Prototype Networks
  126  
3.8.2 Frequency Response of Scaled Networks
  127  
3.9 Effect of Dissipation
  130  
3.9.1 Relationship of Dissipation Factor 6 and Quality Factor Q0
  132  
3.9.2 Equivalent 8 for Lowpass and Highpass Filters
  134  
3.9.3 Equivalent 8 for Bandpass and Bandstop Filters
  134  
3.10 Asymmetric Response Filters
  136  
3.10.1 Positive Functions
  137  
Summary
  140  
References
  141  
Appendix 3A Unified Design Charts
  143  
4 COMPUTER-AIDED SYNTHESIS OF CHARACTERISTIC POLYNOMIALS
  151  
4.1 Objective Function and Constraints for Symmetric Lowpass Prototype Filter Networks
  152  
4.2 Analytic Gradients of the Objective Function
  154  
4.2.1 Gradient of the Unconstrained Objective Function
  155  
4.2.2 Gradient of the Inequality Constraint
  156  
4.2.3 Gradient of the Equality Constraint
  157  
4.3 Optimization Criteria for Classical Filters
  158  
4.3.1 Chebyshev Function Filters
  158  
4.3.2 Inverse Chebyshev Filters
  159  
4.3.3 Elliptic Function Filters
  159  
4.4 Generation of Novel Classes of Filter Functions
  161  
4.4.1 Equiripple Passbands and Stopbands
  161  
4.4.2 Nonequiripple Stopband with an Equiripple Passband
  163  
4.5 Asymmetric Class of Filters
  163  
4.5.1 Asymmetric Filters with Chebyshev Passband
  164  
4.5.2 Asymmetrical Filters with Arbitrary Response
  166  
4.6 Linear Phase Filters
  168  
4.7 Critical Frequencies for Selected Filter Functions
  169  
Summary
  169  
References
  170  
Appendix 4A Critical Frequencies for an Unconventional 8-Pole Filter
  171  
5 ANALYSIS OF MULTIPORT MICROWAVE NETWORKS
  173  
5.1 Matrix Representation of Two-Port Networks
  174  
5.1.1 Impedance [Z] and Admittance [Y] Matrices
  174  
5.1.2 The [ABCD] Matrix
  175  
5.1.3 The Scattering [S] Matrix
  178  
5.1.4 The Transmission Matrix [T]
  183  
5.1.5 Analysis of Two-Port Networks
  185  
5.2 Cascade of Two Networks
  189  
5.3 Multiport Networks
  198  
5.4 Analysis of Multiport Networks
  200  
Summary
  205  
References
  206  
6 SYNTHESIS OF A GENERAL CLASS OF THE CHEBYSHEV FILTER FUNCTION
  207  
6.1 Polynomial forms of the Transfer and Reflection Parameters S21(s) and S11(s) for a Two-Port Network
  207  
6.1.1 Relationship Between epsilon and epsilonR
  215  
6.2 Alternating Pole Method for Determination of the Denominator Polynomial E(s)
  216  
6.3 General Polynomial Synthesis Methods for Chebyshev Filter Functions
  219  
6.3.1 Polynomial Synthesis
  220  
6.3.2 Recursive Technique
  225  
6.3.3 Polynomial Forms for Symmetric and Asymmetric Filtering Functions
  229  
6.4 Predistorted Filter Characteristics
  230  
6.4.1 Synthesis of the Predistorted Filter Network
  236  
6.5 Transformation for Dual-Band Bandpass Filters
  238  
Summary
  241  
References
  242  
7 SYNTHESIS OF NETWORKùCIRCUIT APPROACH
  243  
7.1 Circuit Synthesis Approach
  245  
7.1.1 Buildup of [ABCD] Matrix for the Third-Degree Network
  246  
7.1.2 Network Synthesis
  247  
7.2 Lowpass Prototype Circuits for Coupled-Resonator Microwave Bandpass Filters
  250  
7.2.1 Synthesis of the [ABCD] Polynomials for Circuits with Inverters
  251  
7.2.2 Synthesis of the [ABCD] Polynomials for the Singly Terminated Filter Prototype
  258  
7.3 Ladder Network Synthesis
  260  
7.4 Synthesis Example of an Asymmetric (4-2) Filter Network
  269  
Summary
  276  
References
  277  
8 COUPLING MATRIX SYNTHESIS OF FILTER NETWORKS
  279  
8.1 Coupling Matrix
  279  
8.1.1 Bandpass and Lowpass Prototypes
  281  
8.1.2 Formation of the General N x N Coupling Matrix and its Analysis
  282  
8.1.3 Formation of the Coupling Matrix from the Lowpass Prototype Circuit Elements
  286  
8.1.4 Analysis of the Network Represented by the Coupling Matrix
  288  
8.1.5 Direct Analysis
  291  
8.2 Direct Synthesis of the CouplinL, Matrix
  292  
8.2.1 Direct Synthesis of the N x N Coupling Matrix
  293  
8.3 Coupling Matrix Reduction
  295  
8.3.1 Similarity Transformation and Annihilation of Matrix Elements
  296  
8.4 Synthesis of the N + 2 Coupling Matrix
  303  
8.4.1 Synthesis of the Transversal Coupling Matrix
  304  
8.4.2 Reduction of the N + 2 Transversal Matrix to the Folded Canonical Form
  311  
8.4.3 Illustrative Example
  312  
Summary
  315  
References
  316  
9 RECONFIGURATION OF THE FOLDED COUPLING MATRIX
  319  
9.1 Symmetric Realizations for Dual-Mode Filters
  320  
9.1.1 Sixth-Degree Filter
  322  
9.1.2 Eighth-Degree Filter
  322  
9.1.3 10th-Degree Filter
  323  
9.1.4 12th-Degree Filter
  323  
9.2 Asymmetric Realizations for Symmetric Characteristics
  325  
9.3 "Pfitzenmaier" Configurations
  326  
9.4 Cascaded Quartets (CQs)ùTwo Quartets in Cascade for Degrees 8 and Above
  328  
9.5 Parallel-Connected Two-Port Networks
  331  
9.5.1 Even-Mode and Odd-Mode Coupling Submatrices
  335  
9.6 Cul-de-Sac Configuration
  337  
9.6.1 Further Cul-de-Sac Forms
  340  
9.6.2 Sensitivity Considerations
  345  
Summary
  345  
References
  347  
10 SYNTHESIS AND APPLICATION OF EXTRACTED POLE AND TRISECTION ELEMENTS  349  
10.1 Extracted Pole Filter Synthesis
  349  
10.1.1 Synthesis of the Extracted Pole Element
  350  
10.1.2 Example of Synthesis of Extracted Pole Network
  354  
10.1.3 Analysis of the Extracted Pole Filter Network
  357  
10.1.4 Direct-Coupled Extracted Pole Filters
  360  
10.2 Synthesis of Bandstop Filters Using the Extracted Pole Technique
  364  
10.2.1 Direct-Coupled Bandstop Filters
  366  
10.3 Trisections
  371  
10.3.1 Synthesis of the TrisectionùCircuit Approach
  373  
10.3.2 Cascade TrisectionsùCoupling Matrix Approach
  379  
10.3.3 Techniques Based on the Trisection for Synthesis of Advanced Circuits
  387  
10.4 Box Section and Extended Box Configurations
  392  
10.4.1 Box Sections
  393  
10.4.2 Extended Box Sections
  397  
Summary
  401  
References
  402  
11 MICROWAVE RESONATORS  405  
11.1 Microwave Resonator Configurations
  405  
11.2 Calculation of Resonant Frequency
  409  
11.2.1 Resonance Frequency of Conventional Transmission-Line Resonators
  409  
11.2.2 Resonance Frequency Calculation Using the Transverse Resonance Technique
  412  
11.2.3 Resonance Frequency of Arbitrarily Shaped Resonators
  413  
11.3 Resonator Unloaded Q Factor
  416  
11.3.1 Unloaded Q Factor of Conventional Resonators
  418  
11.3.2 Unloaded Q of Arbitrarily Shaped Resonators
  421  
11.4 Measurement of Loaded and Unloaded Q Factor
  421  
Summary
  428  
References
  429  
12 WAVEGUIDE AND COAXIAL LOWPASS FILTERS  431  
12.1 Commensurate-Line Building Elements
  432  
12.2 Lowpass Prototype Transfer Polynomials
  433  
12.2.1 Chebyshev Polynomials of the Second Kind
  433  
12.2.2 AchieserûZolotarev Functions
  436  
12.3 Synthesis and Realization of the Distributed Stepped Impedance Lowpass Filter
  438  
12.3.1 Mapping the Transfer Function S21 from the w Plane to the 0 Plane
  439  
12.3.2 Synthesis of the Stepped Impedance Lowpass Prototype Circuit
  441  
12.3.3 Realization
  443  
12.4 Short-Step Transformers
  448  
12.5 Synthesis and Realization of Mixed Lumped/Distributed Lowpass Filter
  451  
12.5.1 Formation of the Transfer and Reflection Polynomials
  452  
12.5.2 Synthesis of the TaperedûCorrugated Lowpass Prototype Circuit
  454  
12.5.3 Realization
  458  
Summary
  466  
References
  466  
13 WAVEGUIDE REALIZATION OF SINGLE- AND DUAL-MODE RESONATOR FILTERS  469  
13.1 Synthesis Process
  470  
13.2 Design of the Filter Function
  471  
13.2.1 Amplitude Optimization
  471  
13.2.2 Rejection Lobe Optimization
  472  
13.2.3 Group Delay Optimization
  474  
13.3 Realization and Analysis of the Microwave Filter Network
  479  
13.4 Dual-Mode Filters
  485  
13.4.1 Virtual Negative Couplings
  486  
13.5 Coupling Sign Correction
  488  
13.6 Dual-Mode Realizations for Some Typical Coupling Matrix Configurations
  489  
13.6.1 Folded Array
  490  
13.6.2 Pfitzenmaier Configuration
  491  
13.6.3 Propagating Forms
  492  
13.6.4 Cascade Quartet
  492  
13.6.5 Extended Box
  492  
13.7 Phase- and Direct-Coupled Extracted Pole Filters
  494  
13.8 The "Full Inductive" Dual-Mode Filter
  496  
13.8.1 Synthesis of the Equivalent Circuit
  498  
Summary
  499  
References
  500  
14 DESIGN AND PHYSICAL REALIZATION OF COUPLED RESONATOR FILTERS  501  
14.1 Circuit Models for Chebyshev Bandpass Filters
  502  
14.2 Calculation of Interresonator Coupling
  507  
14.2.1 The Use of Electric Wall and Magnetic Wall Symmetry
  507  
14.2.2 Interresonator Coupling Calculation Using S Parameters
  509  
14.3 Calculation of InputOutput Coupling
  511  
14.3.1 Frequency Domain Method
  511  
14.3.2 Group Delay Method
  512  
14.4 Design Example of Dielectric Resonator Filters Using the Coupling Matrix Model
  513  
14.4.1 Calculation of Dielectric Resonator Cavity Configuration
  515  
14.4.2 Calculation of Iris Dimensions for Interresonator Coupling
  516  
14.4.3 Calculation of InputOutput Coupling
  518  
14.5 Design Example of a Waveguide Iris Filter Using the Impedance Inverter Model
  521  
14.6 Design Example of a Microstrip Filter Using the J-Admittance Inverter Model
  524  
Summary
  529  
References
  530  
15 ADVANCED EM-BASED DESIGN TECHNIQUES FOR MICROWAVE FILTERS  531  
15.1 EM-Based Synthesis Techniques
  532  
15.2 EM-Based Optimization Techniques
  532  
15.2.1 Optimization Using an EM Simulatoi
  534  
15.2.2 Optimization Using Semi-EM-Based Simulator
  535  
15.2.3 Optimization Using an EM Simulator with Adaptive Frequency Sampling
  537  
15.2.4 Optimization Using EM-Based Neural Network Models
  538  
15.2.5 Optimization Using EM-Based Multidimensional Cauchy Technique
  543  
15.2.6 Optimization Using EM-Based Fuzzy Logic
  544  
15.3 EM-Based Advanced Design Techniques
  544  
15.3.1 Space Mapping Techniques
  545  
15.3.2 Calibrated Coarse Model (CCM) Techniques
  553  
15.3.3 Generalized Calibrated Coarse Model Technique for Filter Design
  559  
Summary
  563  
References
  564  
16 DIELECTRIC RESONATOR FILTERS  567  
16.1 Resonant Frequency Calculation in Dielectric Resonators
  568  
16.2 Rigorous Analyses of Dielectric Resonators
  572  
16.2.1 Mode Charts for Dielectric Resonators
  574  
16.3 Dielectric Resonator Filter Configurations
  576  
16.4 Design Considerations for Dielectric Resonator Filters
  580  
16.4.1 Achievable Filter Q Value
  580  
16.4.2 Spurious Performance of Dielectric Resonator Filters
  581  
16.4.3 Temperature Drift
  582  
16.4.4 Power Handling Capability
  583  
16.5 Other Dielectric Resonator Configurations
  583  
16.6 Cryogenic Dielectric Resonator Filters
  587  
16.7 Hybrid Dielectric/Superconductor Filters
  589  
Summary
  592  
References
  593  
17 ALLPASS PHASE AND GROUP DELAY EQUALIZER NETWORKS  595  
17.1 Characteristics of Allpass Networks
  596  
17.2 Lumped-Element Allpass Networks
  597  
17.2.1 Resistively Terminated Symmetric Lattice Networks
  599  
17.2.2 Network Realizations
  601  
17.3 Microwave Allpass Networks
  603  
17.4 Physical Realization of Allpass Networks
  608  
17.4.1 Transmission-Type Equalizers
  609  
17.4.2 Reflection-Type Allpass Networks
  609  
17.5 Synthesis of Reflection-Type Al1pass Networks
  610  
17.6 Practical Narrowband Reflection-Type Allpass Networks
  612  
17.6.1 C-Section Allpass Equalizer in Waveguide Structure
  613  
17.6.2 D-Section Al1pass Equalizer in Waveguide Structure
  615  
17.6.3 Narrowband TEM Reactance Networks
  615  
17.7 Optimization Criteria for Allpass Networks
  616  
17.8 Effect of Dissipation
  620  
17.8.1 Dissipation Loss of a Lumped-Element First-Order Allpass Equalizer
  620  
17.8.2 Dissipation Loss of a Second-Order Lumped Equalizer
  621  
17.8.3 Effect of Dissipation in Distributed Allpass Networks
  621  
17.9 Equalization Tradeoffs
  622  
Summary
  623  
References
  623  
18 MULTIPLEXER THEORY AND DESIGN  625  
18.1 Background
  625  
18.2 Multiplexer Configurations
  627  
18.2.1 Hybrid Coupled Approach
  627  
18.2.2 Circulator-Coupled Approach
  629  
18.2.3 Directional Filter Approach
  630  
18.2.4 Manifold-Coupled Approach
  630  
18.3 RF Channelizers (Demultiplexers)
  632  
18.3.1 Hybrid Branching Network
  633  
18.3.2 Circulator-Coupled MUX
  634  
18.3.3 En Passant Distortion
  636  
18.4 RF Combiners
  638  
18.4.1 Circulator-Coupled MUX
  640  
18.4.2 Hybrid-Coupled Filter Combiner Module (HCFM) Multiplexer
  640  
18.4.3 Directional Filter Combiner
  643  
18.4.4 Manifold Multiplexer
  645  
18.5 TransmitûReceive Diplexers
  661  
18.5 Internal Voltage Levels in TxRx Diplexer Filters
  665  
Summary
  668  
References
  669  
19 COMPUTER-AIDED DIAGNOSIS AND TUNING OF MICROWAVE FILTERS  671  
19.1 Sequential Tuning of Coupled Resonator Filters
  672  
19.2 Computer-Aided Tuning Based on Circuit Model Parameter Extraction
  678  
19.3 Computer-Aided Tuning Based on Poles and Zeros of the Input Reflection Coefficient
  683  
19.4 Time-Domain Tuning
  687  
19.4.1 Time-Domain Tuning of Resonator Frequencies
  688  
19.4.2 Time-Domain Tuning of Interresonator Coupling
  689  
19.4.3 Time-Domain Response of a Golden Filter
  691  
19.5 Filter Tuning Based on Fuzzy Logic Techniques
  692  
19.5.1 Description of Fuzzy Logic Systems
  693  
19.5.2 Steps in Building the FL System
  694  
19.5.3 Comparison Between Boolean Logic and Fuzzy Logic
  697  
19.5.4 Applying Fuzzy Logic to Filter Tuning
  700  
19.6 Automated Setups for Filter Tuning
  703  
Summary
  706  
References
  707  
20 HIGH-POWER CONSIDERATIONS IN MICROWAVE FILTER NETWORKS  711  
20.1 Background
  711  
20.2 High-Power Requirements in Wireless Systems
  712  
20.3 High-Power Amplifiers (HPAs)
  713  
20.4 High-Power Breakdown Phenomena
  714  
20.4.1 Gaseous Breakdown
  715  
20.4.2 Mean Free Path
  715  
20.4.3 Diffusion
  716  
20.4.4 Attachment
  716  
20.4.5 Breakdown in Air
  716  
20.4.6 Critical Pressure
  717  
20.4.7 Power Rating of Waveguides and Coaxial Transmission Lines
  719  
20.4.8 Derating Factors
  720  
20.4.9 Impact of Thermal Dissipation on Power Rating
  721  
20.5 High-Power Bandpass Filters
  722  
20.5.1 Bandpass Filters Limited by Thermal Dissipation
  723  
20.5.2 Bandpass Filters Limited by Voltage Breakdown
  724  
20.5.3 Filter Prototype Network
  724  
20.5.4 Lumped To Distributed Scaling
  725  
20.5.5 Resonator Voltages from Prototype Network
  726  
20.5.6 Example and Verification Via FEM Simulation
  727  
20.5.7 Example of High Voltages in a Multiplexer
  729  
20.6 Multipaction Breakdown
  730  
20.6.1 Dependence on Vacuum Environment
  730  
20.6.2 Dependence on Applied RF Voltage
  730  
20.6.3 Dependence on f x d Product
  731  
20.6.4 Dependence on Surface Conditions of Materials
  732  
20.6.5 Detection and Prevention of Multipaction
  732  
20.6.6 Design Margins in Multipaction
  733  
20.6.7 Multipactor Breakdown Levels
  737  
20.7 Passive Intermodulation (PIM) Consideration for High-Power Equipment
  739  
20.7.1 PIM Measurement
  740  
20.7.2 PIM Control Guidelines
  741  
Summary
  742  
References
  743  
APPENDIX A  745  
APPENDIX B  747  
APPENDIX C  749  
APPENDIX D  751  
INDEX
看来是很难找了.:cacakiki16de
:cacakiki1de经典:22bb
好多米啊,可是俺没有书
这么经典的书,等待本论坛发布!
这本书的确不便宜啊 呵呵~ 等待电子版
期待,陪楼主等
特别期待!!!!!!!!!!!!!!!
期待好心人扫描下来了,呵呵
好书,就是太贵了。现在的好书基本上都要上百元才能买到
真是诱惑啊,可惜没有!
估计不会有电子版的,嘿嘿,期待中文版本。
等待中!!!!!!!
帮顶。。。。。。
陪楼主一起等!有消息再说!
诱人啊,可惜弄不到,一起期待中!:10de:10de:10de
同求,版主帮帮忙
同求,版主帮帮忙
去这里下载吧:http://www.mwtee.com/thread-678889-1-1.html

记得给分哦
我这有呵呵
稍后我传上呵呵
Microwave Filters for Communication Systems  (part 1)
Microwave Filters for Communication Systems  (part 2)
Microwave Filters for Communication Systems  (part 3)

Microwave Filters for Communication Systems  (part 4)

Microwave Filters for Communication Systems  (part 5)

Microwave Filters for Communication Systems  (part 6)

Microwave Filters for Communication Systems  (part 7)

Microwave Filters for Communication Systems  (part 8)

真是好人啊,正找这本书呢,真是谢谢楼主啊
楼主真是个好人,谢谢无私分享{:soso_e200:}
楼主真是个好人,谢谢无私分享{:soso_e200:}
看来是很难找了.
客服中心 搜索
关于我们
关于我们
关注我们
联系我们
帮助中心
资讯中心
企业生态
社区论坛
服务支持
资源下载
售后服务
推广服务
关注我们
官方微博
官方空间
官方微信
返回顶部