搜索附件  
头雁微网 附件中心 技术应用 情报信息 QQ截图未命名.jpg
板块导航
附件中心&附件聚合2.0
For Discuz! X3.5 © hgcad.com

QQ截图未命名.jpg

 

Advanced Modeling in Computational Electromagnetic Compatibility:

Copyright  2007 by John Wiley & Sons, Inc. All rights reserved.
Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.
No part of this publication may be reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without
either the prior written permission of the Publisher, or authorization through payment of the
appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers,
MA 01923, 978-750-8400, fax 978-646-8600, or on the web at www.copyright.com. Requests to the
Publisher for permission should be addressed to the Permissions Department, JohnWiley & Sons, Inc., 111
River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008.
Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts
in preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be suitable
for your situation. You should consult with a professional where appropriate. Neither the publisher nor
author shall be liable for any loss of profit or any other commercial damages, including but not limited to
special, incidental, consequential, or other damages.
For general information on our other products and services please contact our Customer Care Department
within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.
Wiley also publishes its books in a variety of electronic formats. Some content that appears in print,
however, may not be available in electronic format.
Wiley Bicentennial Logo: Richard J. Pacifico
Library of Congress Cataloging-in-Publication Data:
Poljak, D. (Dragan)
Advanced modeling in computational electromagnetic compatibility / by Dragan Poljak.
p. cm.
Includes bibliographical references.
ISBN: 978-0-470-03665-5
1. Electromagnetic compatibility–Mathematical models. 2. Electromagnetic compatibility–Data
processing. I. Title.
TK7867.2.P65 2007
621.382’24–dc22 2006027628
Printed in the United States of America.
CONTENTS
PREFACE xv
PART I: FUNDAMENTAL CONCEPTS IN COMPUTATIONAL
ELECTROMAGNETIC COMPATIBILITY 1
1. Introduction to Computational Electromagnetics
and Electromagnetic Compatibility 3
1.1 Historical Note on Modeling in Electromagnetics 3
1.2 Electromagnetic Compatibility and Electromagnetic
Interference 5
1.2.1 EMC Computational Models and Solution Methods 5
1.2.2 Classification of EMC Models 7
1.2.3 Summary Remarks on EMC Modeling 8
1.3 References 8
2. Fundamentals of Electromagnetic Theory 10
2.1 Differential Form of Maxwell Equations 10
2.2 Integral Form of Maxwell Equations 11
2.3 Maxwell Equations for Moving Media 14
2.4 The Continuity Equation 17
2.5 Ohm’s Law 19
2.6 Conservation Law in the Electromagnetic Field 21
2.7 The Electromagnetic Wave Equations 24
2.8 Boundary Relationships for Discontinuities in Material
Properties 26
2.9 The Electromagnetic Potentials 32
2.10 Boundary Relationships for Potential Functions 33
2.11 Potential Wave Equations 35
2.11.1 Coulomb Gauge 36
TEAM LinG
2.11.2 Diffusion Gauge 37
2.11.3 Lorentz Gauge 38
2.12 Retarded Potentials 40
2.13 General Boundary Conditions and Uniqueness Theorem 41
2.14 Electric and Magnetic Walls 41
2.15 The Lagrangian Form of Electromagnetic Field Laws 42
2.15.1 Lagrangian Formulation and Hamilton Variational
Principle 43
2.15.2 Lagrangian Formulation and Hamilton Variational
Principle in Electromagnetics 45
2.16 Complex Phasor Notation of Time-Harmonic
Electromagnetic Fields 51
2.16.1 Poyinting Theorem for Complex Phasors 52
2.16.2 Complex Phasor Form of Electromagnetic
Wave Equations 53
2.16.3 The Retarded Potentials for the Time-Harmonic
Fields 54
2.17 Transmission Line Theory 54
2.17.1 Field Coupling Using Transmission Line Models 55
2.17.2 Derivation of Telegrapher’s Equation for the Two-Wire
Transmission Line 56
2.18 Plane Wave Propagation 66
2.19 Radiation 68
2.19.1 Radiation Mechanism 68
2.19.2 Hertzian Dipole 69
2.19.3 Fundamental Antenna Parameters 71
2.19.4 Linear Antennas 75
2.20 References 79
3 Introduction to Numerical Methods in Electromagnetics 80
3.1 Analytical Versus Numerical Methods 82
3.1.1 Frequency and Time Domain Modeling 82
3.2 Overview of Numerical Methods: Domain, Boundary,
and Source Simulation 84
3.2.1 Modeling of Problems via the Domain
Methods: FDM and FEM 84
3.2.2 Modeling of Problems via the BEM:
Direct and Indirect Approach 85
viii CONTENTS
TEAM LinG
3.3 The Finite Difference Method 85
3.3.1 One-Dimensional FDM 86
3.3.2 Two-Dimensional FDM 88
3.4 The Finite Element Method 91
3.4.1 Basic Concepts of FEM 91
3.4.2 One-Dimensional FEM 92
3.4.3 Two-Dimensional FEM 98
3.5 The Boundary Element Method 109
3.5.1 Integral Equation Formulation 109
3.5.2 Boundary Element Discretization 114
3.5.3 Computational Example for 2D Static Problem 121
3.6 References 122
4 Static Field Analysis 123
4.1 Electrostatic Fields 123
4.2 Magnetostatic Fields 124
4.3 Modeling of Static Field Problems 126
4.3.1 Integral Equations in Electrostatics Using Sources 126
4.3.2 Computational Example: Modeling of a Lightning
Rod 129
4.4 References 135
5 Quasistatic Field Analysis 136
5.1 Introduction 136
5.2 Formulation of the Quasistatic Problem 137
5.3 Integral Equation Representation of the Helmholtz
Equation 140
5.4 Computational Example 143
5.4.1 Analytical Solution of the Eddy Current Problem 144
5.4.2 Boundary Element Solution of the Eddy Current
Problem 146
5.5 References 150
6 Electromagnetic Scattering Analysis 151
6.1 The Electromagnetic Wave Equations 151
6.2 Complex Phasor Form of the Wave Equations 154
6.3 Two-Dimensional Scattering from a Perfectly
Conducting Cylinder of Arbitrary Cross-Section 154
CONTENTS ix
TEAM LinG
6.4 Solution by the Indirect Boundary Element Method 156
6.4.1 Constant Element Case 158
6.4.2 Linear Elements Case 159
6.5 Numerical Example 159
6.6 References 162
PART II: ANALYSIS OF THIN WIRE ANTENNAS
AND SCATTERERS 163
7 Wire Antennas and Scatterers: General
Considerations 165
7.1 Frequency Domain Thin Wire Integral Equations 165
7.2 Time Domain Thin Wire Integral Equations 166
7.3 Modeling in the Frequency and Time Domain:
Computational Aspects 167
7.4 References 168
8 Wire Antennas and Scatterers: Frequency Domain Analysis 171
8.1 Thin Wires in Free Space 171
8.1.1 Single Straight Wire in Free Space 172
8.1.2 Boundary Element Solution of Thin Wire Integral
Equation 174
8.1.3 Calculation of the Radiated Electric Field and the Input
Impedance of the Wire 180
8.1.4 Numerical Results for Thin Wire in
Free Space 180
8.1.5 Coated Thin Wire Antenna in Free Space 181
8.1.6 The Near Field of a Coated Thin Wire Antenna 186
8.1.7 Boundary Element Procedures for Coated Wires 187
8.1.8 Numerical Results for Coated Wire 190
8.1.9 Thin Wire Loop Antenna 191
8.1.10 Boundary Element Solution of Loop Antenna Integral
Equation 193
8.1.11 Numerical Results for a Loop Antenna 196
8.1.12 Thin Wire Array in Free Space: Horizontal Arrangement 196
8.1.13 Boundary Element Analysis of Horizontal Antenna
Array 199
8.1.14 Radiated Electric Field of the Wire Array 201
x CONTENTS
TEAM LinG
8.1.15 Numerical Results for Horizontal Wire Array 201
8.1.16 Boundary Element Analysis of Vertical Antenna Array:
Modeling of Radio Base Station Antennas 201
8.1.17 Numerical Procedures for Vertical Array 207
8.1.18 Numerical Results 209
8.2 Thin Wires Above a Lossy Half-Space 213
8.2.1 Single Straight Wire Above a Dissipative
Half-Space 214
8.2.2 Loaded Antenna Above a Dissipative
Half-Space 220
8.2.3 Electric Field and the Input Impedance of a Single
Wire Above a Half-Space 222
8.2.4 Boundary Element Analysis for Single Wire Above
a Real Ground 224
8.2.5 Treatment of Sommerfeld Integrals 227
8.2.6 Calculation of Electric Field and Input
Impedance 229
8.2.7 Numerical Results for a Single Wire Above
a Real Ground 233
8.2.8 Multiple Straight Wire Antennas Over a Lossy
Half-Space 237
8.2.9 Electric Field of a Wire Array Above a Lossy
Half-Space 239
8.2.10 Boundary Element Analysis of Wire Array Above
a Lossy Ground 240
8.2.11 Near-Field Calculation for Wires Above
Half-Space 241
8.2.12 Computational Examples for Wires Above a
Lossy Half-Space 242
8.3 References 246
9 Wire Antennas and Scatterers: Time Domain Analysis 250
9.1 Thin Wires in Free Space 252
9.1.1 Single Wire in Free Space 252
9.1.2 Single Wire Far Field 256
9.1.3 Loaded Straight Thin Wire in Free Space 257
9.1.4 Two Coupled Identical Wires in Free Space 259
9.1.5 Measures for Postprocessing of Transient Response 263
CONTENTS xi
TEAM LinG
9.1.6 Computational Procedures for Thin Wires
in Free Space 265
9.1.7 Numerical Results for Thin Wires in Free Space 275
9.2 Thin Wires in a Presence of a Two-Media
Configuration 290
9.2.1 Single Straight Wire Above a Real Ground 290
9.2.2 Far Field Equations 294
9.2.3 Loaded Straight Thin Wire Above a Lossy
Half-Space 296
9.2.4 Two Coupled Horizontal Wires in a Two Media
Configuration 300
9.2.5 Thin Wire Array Above a Real Ground 304
9.2.6 Computational Procedures for Horizontal Wires
Above a Dielectric Half-Space 307
9.2.7 Computational Examples 317
9.3 References 333
PART III: COMPUTATIONAL MODELS IN ELECTROMAGNETIC
COMPATIBILITY 335
10 Transmission Lines of Finite Length: General
Considerations 337
10.1 Transmission Line Theory Method 338
10.2 Antenna Models of the Transmission Lines 340
10.2.1 Above-Ground Transmission Lines 341
10.2.2 Below-Ground Transmission Lines 341
10.3 References 342
11 Electromagnetic Field Coupling to Overhead Lines:
Frequency Domain and Time Domain Analysis 345
11.1 Frequency Domain Analysis: Derivation of Generalized
Telegrapher’s Equations 345
11.2 Frequency Domain Computational Results 351
11.2.1 Single Wire Above an Imperfect Ground 351
11.2.2 Multiple Wire Transmission Line Above an
Imperfect Ground 355
11.3 Time Domain Analysis 359
11.4 Time Domain Computational Examples 359
xii CONTENTS
TEAM LinG
11.4.1 Single Wire Transmission Line 360
11.4.2 Two Wire Transmission Line 367
11.4.3 Three Wire Transmission Line 367
11.5 References 372
12 The Electromagnetic Field Coupling to Buried Cables:
Frequency- and Time-Domain Analysis 374
12.1 The Frequency-Domain Approach 374
12.1.1 Formulation in the Frequency Domain 375
12.1.2 Numerical Solution of the Integral Equation 378
12.1.3 The Calculation of Transient Response 380
12.1.4 Numerical Results 381
12.2 Time-Domain Approach 384
12.2.1 Formulation in the Time Domain 384
12.2.2 Time-Domain Energy Measures 391
12.2.3 Time-Domain Numerical Solution Procedures 392
12.2.4 Computational Examples 395
12.3 References 403
13 Simple Grounding Systems 405
13.1 Vertical Grounding Electrode 406
13.1.1 Integral Equation Formulation for the Vertical
Grounding Electrode 407
13.1.2 The Evaluation of the Input Impedance Spectrum 411
13.1.3 Numerical Procedures for Vertical
Grounding Electrode 413
13.1.4 Calculation of the Transient Impedance 414
13.1.5 Numerical Results 416
13.2 Horizontal Grounding Electrode 418
13.2.1 Integral Equation Formulation for the Horizontal Electrode 420
13.2.2 The Evaluation of the Input Impedance
Spectrum 425
13.2.3 Numerical Procedures for Horizontal Electrode 427
13.2.4 The Transient Impedance Calculation 428
13.2.5 Numerical Results 428
13.3 Transmission Line Method Versus Antenna Theory Approach 437
13.3.1 Transmission Line Method (TLM) Approach
to Modeling of Horizontal Grounding Electrode 438
CONTENTS xiii
TEAM LinG
13.3.2 Computational Examples 439
13.4 Measures for Quantifying the Transient Response
of Grounding Electrodes 443
13.4.1 Transient Response Assessment 443
13.4.2 Measures for Quantifying the Transient Response 444
13.4.3 Computational Examples 445
13.5 References 451
14 Human Exposure to Electromagnetic Fields 453
14.1 Environmental Risk of Electromagnetic Fields:
General Considerations 453
14.1.1 Nonionizing and Ionizing Radiation 454
14.1.2 Electrosmog or Radiation Pollution at Low and High
Frequencies 454
14.1.3 The Effects of Low Frequency Fields 455
14.1.4 The Effects of High Frequency Fields 456
14.1.5 Remarks on Electromagnetic Fields and Related
Possible Hazard to Humans 457
14.2 Assessment of Human Exposure to Electromagnetic
Fields: Frequency and Time Domain Approach 458
14.2.1 Frequency Domain Cylindrical Antenna Model 458
14.2.2 Realistic Models of the Human Body for ELF
Exposures 459
14.2.3 Human Exposure to Transient Electromagnetic Fields 459
14.3 Human Exposure to Extremely Low Frequency (ELF)
Electromagnetic Fields 459
14.3.1 Parasitic Antenna Representation of the Human Body 460
14.3.2 Realistic Modeling of the Human Body 467
14.4 Exposure of Humans to Transient Radiation:
Cylindrical Model of the Human Body 478
14.4.1 Time Domain Model of the Human Body 479
14.4.2 Measures of the Transient Response 480
14.5 References 489
Index 493
谢谢分享!
感谢楼主分享,但是这本书市496页,我下载下来只有392页,前11章的。
QQ截图未命名.jpg
客服中心 搜索
关于我们
关于我们
关注我们
联系我们
帮助中心
资讯中心
企业生态
社区论坛
服务支持
资源下载
售后服务
推广服务
关注我们
官方微博
官方空间
官方微信
返回顶部