搜索附件  
头雁微网 附件中心 技术应用 情报信息 Methods Of Numerical Integration 2ed Davis Rabinowitz: Methods.Of.Numerical.Integration_2ed_Davis.Rabinowitz_0122063600.djvu
板块导航
附件中心&附件聚合2.0
For Discuz! X3.5 © hgcad.com

Methods Of Numerical Integration 2ed Davis Rabinowitz: Methods.Of.Numerical.Integration_2ed_Davis.Rabinowitz_0122063600.djvu

 

Methods Of Numerical Integration 2ed Davis Rabinowitz:


Methods Of Numerical Integration 2ed Davis Rabinowitz

METHODS
OF NUMERICAL
INTEGRATION
SECOND EDITION
Philip J. Davis
APPLIED MATHEMATICS DIVISION
BROWN UNIVERSITY
PROVIDENCE, RHODE ISLAND
Philip Rabinowitz
DEPARTMENT OF APPLIED MATHEMATICS
THE WEIZMANN INSTITUTE OF SCIENCE
REHOVOT, ISRAEL
@
ACADEMIC PRESS, INC.
Harcourt Brace Jovanovich, Publishers
San Diego New York Berkeley Boston
London Sydney Tokyo Toronto

COPYRIGHT @ 1984, BY ACADEMIC PRESS, INC.
ALL RIGHTS RESERVED.
NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR
TRANSt.IITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC
OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR ANY
INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT
PERMISSION IN WRITING FROM THE PUBLISHER.
ACADEMIC PRESS, INC.
1250 Sixth Avenue, San Diego, California 92101
United Kingdom Edition published by
ACADEMIC PRESS, INC. (LONDON) LTD.
24/28 Oval Road, London NWI 7DX
Library of Congress Cataloging in Publication Data
Davis, Philip J, Date
Methods of numerical integration.
(Computer science and applied mathematics)
Includes bibliographies and index.
1. Numerical integration. I. Rabinowitz, Philip.
II. Title. III. Series.
QA299.3.D28 1983 515'.624 83-13522
ISBN 0-12-206360-0 (alk. paper)
PRINTED IN THE UNITED STATES OF AMERICA
88 89 9 8 7 6 5 4 :\ 2
10

Contents
Preface to First Edition
Preface to Second Edition
CHAPTER 1 INTRODUCTION
1 . 1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1. 11
1.12
1.13
1.14
1.15
1.16
Why Numerical Integration?
Formal Differentiation and Integration on Computers
Numerical Integration and Its Appeal in Mathematics
Limitations of Numerical Integration
The Riemann Integral
Improper Integrals
The Riemann Integral in Higher Dimensions
More General Integrals
The Smoothness of Functions and Approximate
Integration
Weight Functions
Some Useful Formulas
Orthogonal Polynomials
Short Guide to the Orthogonal Polynomials
Some Sets of Polynomials Orthogonal over Figures
in the Complex Plane
Extrapolation and Speed-Up
Numerical Integration and the Numerical Solution
of Integral Equations
vii
Xl
XIll
I
3
4
5
7
10
17
20
20
21
22
28
33
42
43
48
viii
CONTENTS
CHAPTER 2 APPROXIMATE INTEGRATION OVER A FINITE
INTER VAL
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
Primitive Rules
Simpson's Rule
Nonequally Spaced Abscissas
Compound Rules
Integration Formulas of Interpolatory Type
Integration Formulas of Open Type
Integration Rules of Gauss Type
Integration Rules Using Derivative Data
Integration of Periodic Functions
Integration of Rapidly Oscillatory Functions
Contour Integrals
Improper Integrals (Finite Interval)
Indefinite Integration
51
57
60
70
74
92
95
132
134
146
168
172
190
CHAPTER 3 APPROXIMATE INTEGRATION OVER INFINITE
INTER V ALS
3.1 Change of Variable 199
3.2 Proceeding to the Limit 202
3.3 Truncation of the Infinite Interval 205
3.4 Primitive Rules for the Infinite Interval 207
3.5 Formulas of Interpolatory Type 219
3.6 Gaussian Formulas for the Infinite Interval 222
3.7 Convergence of Formulas of Gauss Type for Singly
and Doubly Infinite Intervals 227
3.8 Oscillatory Integrands 230
3.9 The Fourier Transform 236
3.10 The Laplace Transform and Its Numerical Inversion 264
CHAPTER 4 ERROR ANALYSIS
4.1 Types of Errors 271
4.2 Roundoff Error for a Fixed Integration Rule 272
4.3 Truncation Error 285
4.4 Special Devices 295
4.5 Error Estimates through Differences 297
4.6 Error Estimates through the Theory of Analytic
Functions 300
4.7 Application of Functional Analysis to Numerical
Integration 317
4.8 Errors for Integrands with Low Continuity 332
4.9 Practical Error Estimation 336
CONTENTS ix
CHAPTER 5 APPROXIMATE INTEGRATION IN TWO OR MORE
DIMENSIONS
5. I Introduction 344
5.2 Some Elementary Multiple Integrals over Standard
Regions 346
5.3 Change of Order of Integration 348
5.4 Change of Variables 348
5.5 Decomposition into Elementary Regions 350
5.6 Cartesian Products and Product Rules 354
5.7 Rules Exact for Monomials 363
5.8 Compound Rules 379
5.9 Multiple Integration by Sampling 384
5. 10 The Present State of the Art 415
CHAPTER 6 AUTOMATIC INTEGRATION
6.1 The Goals of Automatic Integration 418
6.2 Some Automatic Integrators 425
6.3 Romberg Integration 434
6.4 Automatic Integration Using Tschebyscheff
Polynomials 446
6.5 Automatic Integration in Several Variables 450
6.6 Concluding Remarks 461
APPENDIX ION THE PRACTICAL EVALUATION
OF INTEGRALS,
Milton Abramowitz 463
APPENDIX 2FORTRAN PROGRAMS 480
APPENDIX 3 BIBLIOGRAPHY OF ALGOL, FORTRAN,
AND PL/I PROCEDURES 509
APPENDIX 4 BIBLIOGRAPHY OF TABLES 518
APPENDIX 5 BIBLIOGRAPHY OF BOOKS AND ARTICLES 524
Index 605

好像有人求这本书



这是什么格式啊?不识别啊
djvu格式
下个djvu浏览器就可以了
感谢楼主分享
下来看看。
这个封面看起来貌似非常经典的样子~~~
It is a good book.
好书啊!下下来看看
积分方法的专著,好
这本书看起来很有用啊~~~~~
感谢楼主。。。拜读。。。
不太好懂这书
积分这东西可不简单哦
我也是正要找这本书。谢谢谢谢!
非常感谢楼主,正好最近在做高维积分模拟,希望可以有帮助,非常感谢
谢谢分享!书很好。
谢谢,正在学!
好,谢谢
谢谢楼主的分享
谢谢楼主的分享
客服中心 搜索
关于我们
关于我们
关注我们
联系我们
帮助中心
资讯中心
企业生态
社区论坛
服务支持
资源下载
售后服务
推广服务
关注我们
官方微博
官方空间
官方微信
返回顶部