搜索附件  
头雁微网 附件中心 后勤保障 档案室 【Wireless Microwave Systems and Technologies】【2008清华短期课程】: abbr_21caf01073b8b0124696fbb5b2057d80.rar
板块导航
附件中心&附件聚合2.0
For Discuz! X3.5 © hgcad.com

【Wireless Microwave Systems and Technologies】【2008清华短期课程】: abbr_21caf01073b8b0124696fbb5b2057d80.rar

 

【Wireless Microwave Systems and Technologies】【2008清华短期课程】:
【2008清华短期课程】【Wireless Microwave Systems and Technologies()】【从射频系统到MMIC,RF MEMS】

搜了一下论坛没有,现穿上来

主讲为《RFIC.and.MMIC.design.and.technology》作者之一的Professor Stepan Lucyszyn

Wireless Microwave Systems and Technologies
A top-down approach to introducing wireless systems applications
and associated circuit design technologies

Professor Stepan Lucyszyn
The Book
The course is based around the following book:

I. D. Robertson and S. Lucyszyn (Editors), “RFIC and MMIC Design and Technology”, English Version Published by the IEE, London, Nov. 2001; Chinese Translation Published by the Publishing House of Electronics Industry, Beijing, China, Feb. 2007

RFIC and MMIC technology provides the core component for a wide range of microwave and millimetre-wave communications, radar and sensing systems. This textbook, for final-year under graduates and Masters level students, introduces the technology and covers all the key circuit techniques. It takes a detailed look at: devices and fabrication technology; passive components, such as inductors, resistors and coplanar circuits; CAD techniques; amplifiers; oscillators; mixers; switches and attenuators; phase shifters; integrated antennas; transceivers; and measurement techniques.
       
Background
A major problem within a company is the poor communications between marketing managers, system engineers, circuit designers and R&D engineers. Each understand their own field of expertise, but may have limited practical insight at the other levels. For example, a systems engineer may ask a circuit designer to meet specifications that are unrealistic, based on current in-house technologies; so the R&D group steps in to investigate alternative technologies, which may be too costly from the outset or may result in production lead times that are unacceptable for the targets recommended by marketing managers.

Introduction to the Course
The commercial landscape for wireless microwave systems is changing at an ever increasing rate. Driven by consumer demands for greater efficiency, higher levels of performance at lower cost and greater freedom of movement, industry has to demonstrate flexibility as well as good engineering practice. To this end, this course will try to increase human resource potential by explaining some of the fundamental issues associated with commercial wireless microwave applications, at both systems and technological levels.

Objectives
•        To introduce students to some of the many techniques and technologies associated with wireless microwave systems and circuit implementation.
•        To illustrate the conflicting requirements (e.g. increasing performance and cost drivers) imposed by those at other levels in the organizational chain. Through examples, a better understanding of the “big picture” can be gained.

Course Outline
DAY 1 (2nd June): SYSTEMS LEVEL
Topic 1: Commercial Communications Systems
•        Spectrum and Band Allocation
•        Wireless Applications
•        Wireless Communications
•        Wideband-COMA
•        Wireless Local Area Networks
•        ITS and OSRC
•        Ultra Wideband (UWB)
•        Optical Communications

Topic 2: Transceiver Architectures
•        Simple Architectures
•        Simple Receiver Architectures
•        Simple Transmitter Architectures
•        Wideband-COMA Architectures
•        Software Radio
•        Phased-Array Antennas
•        Ultra-Wideband
•        Radio-Over-Fibre Base Stations

Topic 3: Subsystem Specifications
•        General Circuit Specifications
•        Specifications for Nonlinear Circuits
•        Mixers
•        Filters
•        Phase Shifters

Topic 4: RF Power Link Budgets
•        Friis Link Equation
•        Receiver’s Minimum Detectable Signal and Sensitivity
•        Compression and Third-Order Intermodulation
•        Receiver Power Budget Analysis
•        Software Radar

DAY 2 (3rd June): TECHNOLOGY LEVEL

Topic 5: HMIC and MMIC Technologies
•        Introduction to MICs
•        Advantages and Disadvantages
•        Circuit Design Techniques
•        Advanced Foundry Technologies
•        Multi-Chip Module Technology Applications

Topic 6: Control Circuits
•        Phased Array Antennas
•        Phase Shifters
•        Attenuators

Topic 7: Software Radio/Radar Transceivers
•        Direct Carrier Signal Processing
•        I-Q Vector Modulators
- Gilbert Cell
        - Diode Mixer
              - PIN Diode Reflection-Type
              - Balanced (I-Q)
              - Push-Pull (I-Q)
              - I-Q (Push-Pull)





DAY 3 (4th June): RF MEMS

Topic 8: RF Microelectromechanical Systems
•        Introduction to MEMS
•        Fabrication Technologies for MEMS
•        RF MEMS Components
•        Self-Assembly Inductors
•        Variable Capacitors
•        Switches (MMIC and MEMS)
•        Phase Shifters
•        Tuners
•        Filters
•        Antenna
•        Transceiver
•        Packaging

Biography

Stepan Lucyszyn is currently a Reader (Associate Professor) in Millimetre-Wave Electronics at Imperial College London and a Visiting Professor at Tsinghua University (Beijing, China). Following 12 years of RFIC/MMIC research, he has spent the past 7 years focusing on RF MEMS. In 1999, he was a Tan Chin Tuan Exchange Fellow in Engineering at Nanyang Technological University (Singapore). During the summer of 2002, Dr Lucyszyn worked as a Guest Researcher, within the MEMS laboratory of the National Institute of Advanced Industrial Science and Technology (Tsukuba, Japan). In 2004, he published a review paper on RF MEMS technology, which won an IEE Premium Award in 2005. From 2004-2007, he represented Imperial within the European Union’s Framework VI Network of Excellence on Advanced MEMS for RF and Millimeter Wave Communications (AMICOM).
        To date, Dr Lucyszyn has (co-)authored well over 100 technical papers in applied physics and engineering, and presented many invited lectures at international conferences and workshops. In Nov. 2005, he was appointed an Associate Editor for the IEEE/ASME Journal of Microelectromechanical Systems. Over the past few years Dr Lucyszyn has been an External Examiner for numerous research students in the UK, Singapore and China. In addition, he has sat on European panels for the funding of research projects and served as a member of technical programme committees for international conferences. In 2005, he was elected Fellow of the Institution of Electrical Engineers and a Fellow of the Institute of Physics.




        14:00-14:50        15:00-15:50        16:00-17:00
Monday        Communication
Systems        Transceiver Architectures        Subsystem
Specifications        Link
Budgets
Tuesday        HMIC/MMIC
Technologies        Control
Circuits        Software
Transceivers
Wednesday        Radio Frequency Microelectromechanical Systems
先传教材
RFIC.and.MMIC.design.and.technology


Preface
Foreword
Contributors
Acknowledgements
1 Introduction I. D. Robertson
1.1 Introduction
1.2 A brief history of MMIC technology
1.3 Advantages and disadvantages of MMICs
1.3.1 Cost
1.3.2 Performance
1.3.3 Investment required
1.3.4 Reproducibility
1.3.5 Reliability
1.3.6 Size and mass
1.4 Applications
1.5 Active device technologies
1.6 Design approaches
1.7 Multi-chip module technology
1.8 References
2 Devices and fabrication technology I. Thayne, K. Elgaid
and G. Ternent
2.1 Introduction
2.2 Substrates and technologies
2.2.1 111-V HEMT coplanar waveguide MMICs
2.2.2 111-V HBT microstrip MMICs
2.2.3 Silicon bipolar transistor MMICs
2.3 Passive lumped-elements
2.3.1 Resistors
xiii
xvii
xix
vi Contents
2.3.2 Capacitors 39
2.3.3 Spiral inductors 41
2.4 Bipolar transistors 45
2.4.1 Overview of bipolar transistor operation 45
2.4.2 Heterojunction bipolar transistors (HBTs) 54
2.4.3 Summary of contemporary bipolar technologies 56
2.5 Field effect transistors 59
2.5.1 Overview of MEFET operation 59
2.5.2 The high electron mobility transistor (HEMT) 68
2.5.3 Summary of contemporary HEMT technologies 72
2.6 Comparison of bipolar and field effect devices 76
2.6.1 f, and f,, of bipolar and field effect devices 76
2.6.2 Noise performance of bipolar and field effect devices77
2.6.3 Power and linearity performance of bipolar
and field effect devices 79
2.7 Summary 81
2.8 References 81
3 Passive components M. Gillick, I. D. Robertson and S. Lucyszyn 83
3.1 Introduction 83
3.2 Inductors 84
3.2.1 Loop inductors 85
3.2.2 Spiral inductors 85
3.2.3 Stacked spirals 86
3.2.4 Spiral inductor models 87
3.2.5 Planar spiral transformers 88
3.3 Capacitors 89
3.3.1 Overlay capacitors 90
3.3.2 Interdigital capacitors 91
3.4 Resistors 92
3.4.1 GaAs resistors 92
3.4.2 Thin-film resistors 93
3.4.3 Resistor models 93
3.5 Via-holes and grounding 94
3.6 Microstrip components 97
3.6.1 Transmission losses 97
3.6.2 Microstrip couplers and power splitters 98
3.6.3 Special MMIC realisations 100
3.7 Coplanar circuits 103
3.7.1 Slotline 104
3.7.2 Coplanar strips 105
3.7.3 CPW circuits 105
3.8 Multilayer techniques 107
3.8.1 Thin-film microstrip 107
3.8.2 Multilayer directional couplers and baluns 108
3.9 Micromachined passive components 109
3.9.1 Micromachined inductors 109
3.9.2 Micromachined transmission lines 112
3.10 References 116
Contents vii
4 CAD techniques D. S. McPherson and C. E. Chrisostomidis
4.1 Introduction
4.2 Integrated CAD design environment
4.3 CAD package features
4.3.1 Schematic capture
4.3.2 Support tools
4.3.3 Hierarchical design
4.3.4 Circuit component libraries
4.3.5 Simulation controls
4.3.6 Optimisation
4.3.7 Layout
4.4 Circuit simulation engines
4.4.1 DC simulator
4.4.2 Linear circuit simulator
4.4.3 Harmonic balance simulator
4.4.4 Volterra series
4.4.5 Transient analysis
4.4.6 Convolution analysis
4.4.7 Noise analysis
4.4.8 Envelope simulation
4.4.9 Mixed mode analysis
4.4.10 Yield analysis
4.5 Commercial CAD packages
4.5.1 Agilent EEsof EDA Series IVTM
4.5.2 Agilent EEsof EDA ADSTM
4.5.3 Ansoft Serenade DesktopTM
4.5.4 AWR Microwave Office 2000TM
4.5.5 Cadence Analog ArtistTM
4.5.6 Optotek MMICADTM
4.5.7 Eagleware GenesysTM
4.6 Commercial modelling software
4.6.1 Agilent EEsof EDA IC-CAPTM
4.6.2 Optotek Ltd LASIMOTM
4.6.3 IMST GmbH TOPASTM
4.6.4 IMST GmbH COPLANTM
4.7 Electromagnetic simulation tools
4.7.1 Need for EM solvers
4.7.2 EM software requirements
4.7.3 Use and limitations of EM simulators
4.7.4 Types of EM simulator
4.7.5 Numerical methods
4.7.6 Features of EM simulators
4.7.7 Optimising the EM simulator performance
4.7.8 Commercial EM software packages
4.8 References
5 Amplifiers I. D. Robertson and M. W. Geen
5.1 Introduction
5.2 Classical stability and gain analysis
5.2.1 Constant gain circles
viii Contents
5.2.2 The practical implications of the theory
5.2.3 Amplifier design under conditional
stability conditions
5.3 Matching techniques
5.3.1 Lumped-element matching
5.3.2 Distributed matching networks
5.4 DC bias injection
5.4.1 Stacked bias
5.4.2 Off-chip components
5.4.3 WOW testing considerations
5.5 Reactively matched amplifier design
5.5.1 Multi-stage design
5.6 Lossy matching
5.7 FET feedback amplifier
5.8 Distributed amplifier
5.8.1 Gate and drain-line losses
5.8.2 Equalisation of gate- and drain-line phase velocities
5.8.3 Distributed amplifier with constant-R networks
5.8.4 Cascode distributed amplifier
5.8.5 Single-section distributed amplifier
5.8.6 Matrix distributed amplifier
5.8.7 Practical design guidelines
5.8.8 Other circuit functions employing distributed
amplifier techniques
5.9 Active matching
5.9.1 Common-gatelcommon-source1common-drain
amplifier
5.9.2 Darlington pair
5.9.3 DC-coupled amplifiers
5.10 Power amplifiers
5.10.1 Device characterisation
5.10.2 Power combining and cluster matching
5.10.3 Class B operation
5.10.4 High power distributed amplifiers
5.1 1 Low noise amplifiers
5.1 1.1 Noise matching
5.1 1.2 Simultaneous match LNA
5.12 Summary
5.13 References
6 Oscillators K. K. M. Cheng
6.1 Introduction
6.2 Design princjples
6.2.1 Feedback approach
6.2.2 Negative resistance approach
6.3 Active device
6.3.1 GaAs MESFET versus silicon bipolar transistors
6.3.2 Heterojunction bipolar transistors
6.3.3 SiGe technology
6.3.4 RF CMOS technology
Contents ix
6.3.5 Biasing and spurious response suppression
6.4 CAD techniques for large-signal oscillator design
6.4.1 Time-domain method
6.4.2 Harmonic balance algorithm
6.4.3 Volterra series analysis
6.5 Phase noise in oscillators
6.5.1 Spectral characteristics of phase noise
6.5.2 Noise analysis of negative resistance oscillators
6.6 MMIC voltage-controlled oscillator design
6.6.1 Varactor diode modelling
6.6.2 VCO design example
6.7 MMIC injection-locked oscillator design
6.7.1 Unified formulation of injection locking
6.7.2 Analogue frequency divider design example
6.8 References
7 Mixers K. S. Ang and S. J. Nightingale
7.1 Introduction
7.2 Mixer analysis
7.2.1 General analysis
7.2.2 Restricted analysis
7.3 Background reading
7.4 Analysis of mixer circuits
7.4 1 Analysis of a simple single-loop circuit
7.4.2 General non-linear analysis
7.4.3 Conversion loss matrix method
7.5 Diode mixers
7.5.1 Diode mixer design considerations
7.5.2 Single-ended diode mixer
7.5.3 Single-balanced diode mixers
7.5.4 Double-balanced diode mixers
7.5.5 A 94 GHz diode mixer design example
7.6 Coupling structures
7.6.1 90" and 180' hybrids
7.6.2 Passive baluns
7.6.3 Active power combiners and splitters
7.6.4 Active baluns
7.6.5 Balanced oscillators
7.7 Active FET mixers
7.7.1 Gate mixer
7.7.2 Drain mixer
7.7.3 Source mixer
7.7.4 Active FET mixer design considerations
7.7.5 Single-ended FET mixers
7.7.6 Single-balanced FET mixers
7.7.7 Double-balanced FET mixers
7.8 Resistive FET mixers
7.8.1 Single-ended resistive FET mixer
7.8.2 Single-balanced resistive FET mixer
7.8.3 A 60 GHz resistive FET mixer design example
x Contents
7.8.4 Double-balanced resistive FET mixer
7.9 Other mixer structures
7.9.1 Image-rejection and single-sideband mixers
7.9.2 Sub-harmonically pumped mixers
7.9.3 Distributed FET mixers and coupling structures
7.10 Some final comments and observations
7.1 1 References
7.11.1 General
7.1 1.2 Diode mixers
7.11.3 Coupling structures
7.1 1.4 Active FET mixers
7.1 1.5 Resistive FET mixers
7.1 1.6 Image-rejection and single-sideband mixers
7.1 1.7 Sub-harmonic mixers
7.1 1.8 Distributed mixers and coupling structures
8 Switches and attenuators J. S. Joshi
8.1 Introduction
8.2 GaAs FET MMIC switches
8.2.1 GaAs FET switching mechanism
8.2.2 Switched FET equivalent circuit
8.2.3 Implementation of MMIC switches
8.2.4 High isolation switches
8.3 Digital attenuators
8.3.1 Design approaches
8.3.2 Segmented dual-gate FET technique
8.3.3 Switched attenuators
8.3.4 Switched scaled FETs
8.3.5 Switched bridged-T attenuator
8.3.6 Switched T- and K-attenuators
8.3.7 Linearity considerations
8.4 Digital attenuator design example
8.4.1 Higher attenuation bits
8.4.2 Lower attenuation bits
8.4.3 Overall chip design and layout
8.4.4 Measured results
8.5 Analogue attenuators
8.5.1 Analogue reflection-type attenuator
8.5.2 Other analogue attenuators
8.6 Conclusions
8.7 References
9 Phase shifters S. Lucyszyn and J. S. Joshi
9.1 Introduction
9.2 Analogue implementations
9.2.1 Introduction to analogue phase shifters
9.2.2 Single-stage reflection-type phase shifters
9.2.3 Single-stage reflection-type delay lines
9.2.4 Cascaded-match reflection-type phase shifters
9.2.5 Ultra-wide bandwidth analogue phase shifters
Contents xi
9.2.6 Ultra-wide bandwidth distributed analogue
delay lines
9.2.7 Millimetre-wave implementations
9.2.8 Dual-gate MESFET
9.2.9 Phase splitter-power combiner
9.3 Digital implementations
9.3.1 Switched-line
9.3.2 Reflection-type
9.3.3 Loaded-line
9.3.4 Switched-filter
9.3.5 Intrinsic phase shifters
9.3.6 MEMS digital delay lines
9.4 Summary
9.5 References
10 Integrated antennas V. F. Fusco
10.1 Introduction
10.2 Basic integrated antenna requirements
10.2.1 Additional requirements
10.3 Reported applications of integrated antennas
10.4 Integrated antenna retrodirective array example
10.5 Integrated antenna selection
10.5.1 Substrate choice
10.5.2 Measurement issues
10.5.3 Packaging
10.6 Integrated antenna examples
10.7 Photonic bandgap antennas
10.8 Micromachined antennas
10.8.1 Trench etching
10.8.2 Cavity etching
10.9 Microelectromechanical systems antennas
10.10 Conclusions
10.1 1 References
11 Transceivers I. D. Robertson and S. Lucyszyn
1 1.1 Introduction
1 1.2 Conventional upldown-conversion architectures
11.2.1 Filtering solutions
11.2.2 Frequency synthesisers
1 1.2.3 Mixers
11.2.4 Active antenna transceivers
11.3 Direct conversion architectures
1 1.3.1 Direct modulation transmitters
11.3.2 Direct conversion receivers
1 1.3.3 Direct IF sampling receivers
1 1.4 Modulators, demodulators and frequency trans la to^
11.4.1 Vector modulators
1 1.4.2 Frequency translators
1 1.4.3 Serrodyne modulators
11.5 Active filters
xii Contents
1 1.5.1 Active inductor based filters
11.5.2 Actively-coupled passive resonators
11 S.3 Techniques using negative resistance
elements and active loops
1 1.5.4 Transversal and recursive filters
11 S.5 Practical applications
1 1.6 Power amplifier linearisation
1 1.6.1 Linearisation techniques
11.7 Active isolators and circulators
1 1.7.1 Active isolators
11.7.2 Active circulators
1 1.8 Optoelectronic integrated circuits
1 1.8.1 Applications
1 1.8.2 Optically-controlled circuits
1 1.8.3 Circuits for optoelectronic applications
1 1.9 References
12 Measurement techniques S. Lucyszyn
12.1 Introduction
12.2 Test fixture measurements
12.2.1 Two-tier calibration
12.2.2 One-tier calibration
12.2.3 Test fixture design considerations
12.3 Probe station measurements
12.3.1 Passive microwave probe design
12.3.2 Prober calibration
12.3.3 Measurement errors
12.3.4 DC biasing
12.3.5 MMIC layout considerations
12.3.6 Low-cost multiple DC biasing techniques
12.3.7 Upper-millimetre-wave measurements
12.4 Thermal and cryogenic measurements
12.4.1 Thermal measurements
12.4.2 Cryogenic measurements
12.5 Experimental field probing techniques
12.5.1 Electromagnetic-field probing
12.5.2 Magnetic-field probing
12.5.3 Electric-field probing
12.6 Summary
12.7 References
教材论坛里已经有了,不用传了,还是传课程的讲稿吧
上传后文件名怎么改变了?

这个是    清华短期课程---Wireless Microwave Systems and Technologies(从射频系统到MMIC,RF MEMS).part2
---Wireless Microwave Systems and Technologies(从射频系统到MMIC,RF MEMS).part3
清华短期课程---Wireless Microwave Systems and Technologies(从射频系统到MMIC,RF MEMS).part4
清华短期课程---Wireless Microwave Systems and Technologies(从射频系统到MMIC,RF MEMS).part5
清华短期课程---Wireless Microwave Systems and Technologies(从射频系统到MMIC,RF MEMS).part6.
清华短期课程---Wireless Microwave Systems and Technologies(从射频系统到MMIC,RF MEMS).part7

over:

26bb
:26bb
如果不能正常解压,
按下载顺序改一下附件名字即可

:23de
:23de
晚安,同志们
原帖由 tianxian 于 2009-3-15 23:34 发表
清华短期课程---Wireless Microwave Systems and Technologies(从射频系统到MMIC,RF MEMS).part7

over:

26bb
:26bb

不好意思还有最后一个第8分卷

清华短期课程---Wireless Microwave Systems and Technologies(从射频系统到MMIC,RF MEMS).part8
很棒的资料,感谢楼主慷慨分享。:qqv
挺好的资料,谢谢楼主,下载来好好学习下。
顶了啊!支持一下 !:27bb
:30bb :30bb :30bb
谢谢楼主哈
相当好的资料
再次感谢
这是踏破铁鞋无觅处啊:cacakiki4de :cacakiki3de
LZ幸苦了:21bb :21bb :21bb :21bb
解压缩的时候出线错误。。。CRC错误怎么回事呢?
感谢楼主分享
:11bb :11bb :11bb :11bb
多谢多谢
好好学习学习:29bb :29bb :30bb :30bb :30bb
很棒的资料,感谢楼主慷慨分享。
谢谢楼主,挺好的资料.
谢谢楼主,不错的东东
下来看看 哈哈
客服中心 搜索
关于我们
关于我们
关注我们
联系我们
帮助中心
资讯中心
企业生态
社区论坛
服务支持
资源下载
售后服务
推广服务
关注我们
官方微博
官方空间
官方微信
返回顶部