搜索附件  
头雁微网 附件中心 专业技术 微波工程 怎样建立sub-models: Six-Pole_Bandpassfilter_with_Single_Cross-Coupling.pdf
板块导航
附件中心&附件聚合2.0
For Discuz! X3.5 © hgcad.com

怎样建立sub-models: Six-Pole_Bandpassfilter_with_Single_Cross-Coupling.pdf

 

怎样建立sub-models:
怎样建立sub-models
最近在看CST官方的一篇文章,6级交叉耦合带通滤波器,里面讲sub-models,在CST DS里面优化,没看明白怎样建立sub-models,请问有谁能指导一下吗?谢谢!
你看看吧













通过DS中的模块来搭建那篇文章中那个电路图



不知道看了所有之后的你有思路没?
不好意思,还是没看明白,不过还是谢谢你了.
就是把那个六腔的滤波器逐个分割,分别分成不同的.cst文件,一共是7个嘛
楼上的karcsija还能把该例子给发上来看看,我按上面的方法仿真了一个滤波器分开仿真后组合起来的结果跟整体仿真的结果相差比较大,希望能多多交流,谢谢!!!!我的邮箱为zhca2007@yahoo.com.cn
http://www.cst.com/Content/Appli ... ngle+Cross-Coupling
我也是看这个才知道的,有毅力的话去啃啃英文,总部的报告还是挺好的。
看附件也可以,但也是英文的,看你恒心了 呵呵

[ 本帖最后由 time 于 2009-1-9 12:59 编辑 ]
by the two adjacent peaks of the transmission parameter. The final geometry is shown in Figure 1.


                               
登录/注册后可看大图

Figure 1: Final geometry. Note, that the capacitive cross-coupling is made inactive by minimizing its length




                               
登录/注册后可看大图

Figure 2: Typical Chebyshev- response after completion of the tuning process


Instead of performing the optimization with the complete filter, the model was split up into several sub-sections. wWaveguide ports considering a sufficiently large number of modes are assigned at the intersections . CST MWS is used to compute the required S-parameters. Since the number of meshcells of the submodels is small compared to a complete model the runtimes are extremely short, thus the meshdensity can be increased to achieve higher accuracy. Since frequencies below cutoff are considered it is advisable to use the Frequency Domain solver within CST MWS: here the Model order Reduction solver (MOR) was used. Figure 3 illustrates this procedure: Only four submodels are required to describe the complete filter.



                               
登录/注册后可看大图

Figure 3: Definition of the sub-models: At the common interfaces between the sub-models waveguide ports are assigned (not shown here)


The sub-models are loaded into CST DS and linked together. The local sub-model parameters can be accessed and assigned to a global CST DS parameter. These parameters can be used in an optimization process. CST DS uses an interpolation scheme in order to avoid numerous recomputations of S-parameters for individual setups required by the optimizer.



                               
登录/注册后可看大图

Figure 4: CST MWS submodels and their connections via modes. Note the link to global CST DS parameters




                               
登录/注册后可看大图

Figure 5: S-Parameter view of CST DS results


In a next step, the length of the capacitive cross-coupling stub is enlarged to increase the coupling bandwidth for a quadruplet type behaviour described in [3] and [4].



                               
登录/注册后可看大图

Figure 6: Enlarging the length of the stub reinforces the coupling bandwidth




                               
登录/注册后可看大图

Figure 7: The transmission zeros are still in the upper stopband indicating that the coupling is too small. Shown here is also a comparison between a complete model and a sub-model result using CST DS


Finally, the cross-coupling is further increased, resulting in a symmetric location of the transmission zeros above and below the passband. The next two figures show the geometry and the respective S-parameters.



                               
登录/注册后可看大图

Figure 8: Further enlargement of the cross coupling stub




                               
登录/注册后可看大图

Figure 9: Results of the CST DS model: Two transmission zeros appear above and below passband. Adding a diagonally positioned coupling would allow a more symmetric rejection shape


References:
[1] John B. Ness: "A Unified Approach to the Design, Measurement, and Tuning of Coupled-Resonator Filters", IEEE Trans. on MW Theor. and Tech., Vol 46, No 4, April 1998
[2] Peter Martin, John B. Ness: "Coupling Bandwidth and Reflected Group Delay Characterization of MW Bandpass Filters", Applied MW&Wireless, Vol 11, No 5.
[3] Raph Levy: "Filters with Single Transmission Zeros at Real or Imaginary Frequencies", IEEE Trans. on MW Theor. and Techn., Vol. MTT-24, No 4, April 1976
[4] Ralph Levy, Peter Petre: "Design of CT and CQ Filters Using Approximation and Optimization", IEEE Trans. on MW Theor. and Techn., Vol 49, No. 12, Dec. 2001


Appendix:
A bandpass filter can simply be described by low-pass prototype LC elements and by coupling coefficients of the inverter coupled filter. Approximation techniques can be used to get good initial values of the lumped elements [4] to find an optimal overall performance in a consecutive optimization loop. The cross-couplings requires slight changes of the theoretical Chebychev values resulting in very small geometrical modifications. A The next figure shows the equivalent network including also a cross-coupling admittance inverter with a negative C across the nodes 2 and 5.





                               
登录/注册后可看大图

Figure 10: Circuit elements for inverter coupled filter structures




                               
登录/注册后可看大图

Figure 11: Optimized filter response of the bandpass filter within CST DS




                               
登录/注册后可看大图

Figure 12: Parameter list of optimized LC lumped element values


CST Article "Six-Pole Bandpassfilter with Single Cross-Coupling"
last modified 26. Mar 2007 9:43
printed 9. Jan 2009 5:55, Article ID 136
URL: http://imw.mwhrf.com/redirect.php?tid=17725&goto=lastpost

All rights reserved.
Without prior written permission of CST, no part of this publication may be reproduced by any method, be stored or transferred into an electronic data processing system, neither mechanical or by any other method.

Download as PDF
Article ID: 136     Last modified: 26. Mar 2007 9:43
我用时延仿真了一个4腔的滤波器,第一个图为其结构,第二个为cst后处理时延调节的结果(results-template based。。-1dresult-group delay time),第三个图为整体优化的结果,用sub-models的结果实在是差,而且用DS来优化时机器运行缓慢,可能是我的设置有问题,所以请有建好sub-models模型的发上来学习下(我就是根据上面的pdf文档来仿真的)

[ 本帖最后由 zhca 于 2009-1-12 08:48 编辑 ]
顶起,请做过的大侠出来分享下
客服中心 搜索
关于我们
关于我们
关注我们
联系我们
帮助中心
资讯中心
企业生态
社区论坛
服务支持
资源下载
售后服务
推广服务
关注我们
官方微博
官方空间
官方微信
返回顶部