Copyright © 2008 by Morgan & Claypool
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quotations in
printed reviews, without the prior permission of the publisher.
Jordan Canonical Form: Application to Differential Equations
Steven H.Weintraub
www.morganclaypool.com
ISBN: 9781598298048 paperback
ISBN: 9781598298055 ebook
DOI 10.2200/S00146ED1V01Y200808MAS002
A Publication in the Morgan & Claypool Publishers series
SYNTHESIS LECTURES ONMATHEMATICS AND STATISTICS
Lecture #2
Series Editor: Steven G. Krantz,Washington University, St. Louis
Series ISSN
Synthesis Lectures on Mathematics and Statistics
ISSN pending.
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .v
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
1 Jordan Canonical Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 The Diagonalizable Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The General Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
2 Solving Systems of Linear Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
2.1 Homogeneous Systems with Constant Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . .25
2.2 Homogeneous Systems with Constant Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . .40
2.3 Inhomogeneous Systems with Constant Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.4 The Matrix Exponential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
A Background Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
A.1 Bases, Coordinates, and Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69
A.2 Properties of the Complex Exponential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
B Answers to Odd-Numbered Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85