搜索附件  
头雁微网 附件中心 专业技术 微波工程 图表细说电子元器件.part05.rar
板块导航
附件中心&附件聚合2.0
For Discuz! X3.5 © hgcad.com

图表细说电子元器件.part05.rar

 

图表细说电子元器件.pdf:


本书就是从元器件入手,从以下角度讲解元器件的知识: 【识别方法】讲述元器件特征识别、引脚识别、极性识别、参数识别等方法,这部分内容初学者必须掌握。 【电路符号识图信息】给初学者揭开电路符号中的识图信息,帮助读者运用这些识图信息方便地分析该元器件的应用电路。 【主要特性】这是元器件知识的精髓,能否顺利分析电路工作原理,就看对元器件的主要特性是否已经深入“吃透”,这部分内容初学者必须重点掌握。 【重要参数解析】了解这些内容有利于读者掌握元器件检测技术,灵活运用元器件代替原则。 【典型应用电路图解】这是本书的核心内容之一,学习元器件知识的一个重要目的是分析电路工作原理,通过对该元器件典型应用电路的详细讲述,使初学者掌握电路分析的思路和方法,并能触类旁通,自主地分析该元器件的其他应用电路。在电路工作原理的讲述中采用图会说话的表现形式,让初学者轻松愉快地学习电子技术。【检测方法详解】这是本书的一个重要内容,故障检修的关键一步是检测所怀疑的元器件是否正常,所以掌握元器件的检测技术是学好修理技术的重要一环。本书介绍使用万用表对几十种电子元器件的检测方法。 【修配技术和更换操作】 这部分内容关系到修理过程中的具体操作技术,是应会知识,初学者需要扎扎实实地学好、练好。【调整技术介绍】 这部分内容初学者要了解,有些元器件通过调整就能在电路中正常工作。
 
内容简介  

本书以图文同页的方式细说了常用的11大类数十种电子元器件,介绍元器件的识别方法、电路符号识图信息、主要特性、重要参数、典型应用电路、检测方法、修配技术、更换操作、调整技术等相关知识。以电子元器件为轴心,详细讲述电路识图方法和修理技术,使电子技术初学者轻松步入电子天地。
 本书目录  

第1章 电子元器件大观园及电阻器基本电路全解
1.1 电子元器件知识三要素
1.2 应用最广泛的电阻器基础知识全解
1.3 检测基本技能及普通电阻器检测修配方法
1.4 普通电阻器作用和特性详解
1.5 电阻串联和并联电路特性详解
1.6 实用电阻电路详解及电路故障分析
1.7 动手实验篇之一:动手操作技术入门
第2章 电阻类元器件知识全解及电路详解
2.1 可变电阻器电路详解
2.2 电位器知识全解及电路详解
2.3 电位器电路详解
2.3 熔断电阻器知识全解及电路详解
2.4 热敏电阻器和湿敏电阻器知识全解及电路详解
2.5 动手实验篇之二:焊接技术入门
第3章 开关件及接插件电路全解
3.1 普通开关件
3.2 专用开关件
3.3 开关电路详解
3.4 接插件知识全解
3.5 动手实验篇之三:万用表直流电压挡测量技术
第4章 电容器知识全解及电容电路详解
4.1 电容器基础理论知识全解
4.2 电容器故障处理知识全解
4.3 固定电容器主要特性详解
4.4 普通固定电容电路详解
4.5 电解电容器知识全解
4.6 电容串并联电路全解
4.7 可变电容器和微调电容器知识全解
4.8 动手实验篇之四:电容器质量检测实验
第5章 电感器和变压器知识全解
5.1 电感器知识全解
5.2 电感器主要特性和电感电路详解
5.3 电感电路详解
5.4 普通变压器知识全解
5.5 变压器主要特性
5.6 变压器电路详解
5.7 动手实验篇之五:交流电压测量和变压器检测方法
第6章 晶体二极管知识全解
6.1 普通二极管基础知识全解
6.2 二极管故障处理方法解说
6.3 二极管主要特性解说
6.4 二极管基本电路详解
6.5 稳压二极管知识及典型应用电路详解
6.6 发光二极管知识及典型应用电路详解
6.7 开关二极管和变容二极管知识全解
6.8 动手实验篇之六:解剖小型直流电源
第7章 晶体三极管知识全解
7.1 三极管基础知识全解
7.2 三极管故障处理方法
7.3 三极管主要特性
7.4 三极管直流电压供给电路详解
7.5 三极管交流电路详解
7.6 动手实验篇之七:三极管识别和检测实验
第8章 集成电路知识全解
8.1 集成电路基础知识全解
8.2 集成电路故障处理
8.3 集成电路常用引脚识别和外电路分析方法
8.4 动手实验篇之八:测量集成电路引脚直流电压实验
第9章 其他常用元器件知识全解及电路详解
9.1 直流电机知识全解及典型电路详解
9.2 磁头知识全解及磁头电路详解
9.3 话筒知识全解及电路详解
9.4 扬声器知识全解及电路详解
图表细说电子元器件
图表细说电子元器件
图表细说电子元器件
图表细说电子元器件
图表细说电子元器件
图表细说电子元器件
图表细说电子元器件
图表细说电子元器件
图表细说电子元器件
图表细说电子元器件
图表细说电子元器件
图表细说电子元器件
图表细说电子元器件
图表细说电子元器件
图表细说电子元器件
图表细说电子元器件
图表细说电子元器件
图表细说电子元器件
图表细说电子元器件
图表细说电子元器件

[hide]


[/hide]
看看再说.谢谢楼主的共享精神
.          :53bb :11bb
下来看看先
学习学习,.谢谢楼主的共享!
看看再说.谢谢楼主的共享精神...........
樓主精神可嘉,請再接再厲,在此謝過啦。。:11bb
好,谢谢分享!!!!!!!!!!!!!!!
好,谢谢分享!!!!!!!!!!!!!!!
好东西啊
LZ立功了
:11bb
:30bb :30bb :30bb
看看再说.谢谢楼主的共享精神看看再说.谢谢楼主的共享看看再说.谢谢楼主的共享精神精神看看再说.谢谢楼主的共享精神
正需要这方面的知识,谢谢楼主呀!!!!!!!
谢谢搂主 精神可嘉 资料真好啊  非常感谢
谢谢!!!!!!!!!!!!!!!
谢谢楼主,真是受益匪浅:11bb
:11bb :11bb :11bb :27bb :29bb
131131332123111233321312
学习学习,.谢谢楼主的共享!!!!!!!
学习是要靠平时积累的,谢谢分享!!!!!
楼主好人!!!!!!:11bb :30bb
好,谢谢分享!!!!!!!!!!!!!!!
好东西啊哈!谢谢楼主分享!:11bb
谢谢分享,下来看看:51bb .....
:11bb :11bb :11bb
谢谢楼主。从基础学起!合伙

加油!
gh go dlkdklafjls fjdjflajfljf!!!!!!!!!!!
淡淡的点点滴滴点点滴滴点点滴滴的
图表细说电子元器件.pdf,好东西啊
好,谢谢分享!!!!!!!!!!!!!!!
谢谢!!!!!!!!!!!!!!!!!!!!!
谢谢楼主分享这么好的资料。。。。。。。。。。
谢谢楼主分享这么好的资料。。。。。。。。。。
好,谢谢分享!!!!!!!!!!!!!!!
好,谢谢分享!!!!!!!!!!!!!!!
非常感谢,谢谢分享,如果能一次下载就好了
                                                                     
先看看.谢谢!!!!!!!!!!!!!!!
0
很好,我很需要
哥们  为什么06  下载不下来
看看再说.谢谢楼主的共享精神
楼主哥们,为何第六个部分part06下载不下来
谢谢分享!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
学习学习,.谢谢楼主的共享!!!!!!!
:11bb :11bb :11bb
:11bb :11bb :11bb :11bb :11bb
DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
:11bb :11bb :11bb 感谢。辛苦了
楼主很厉害 太好了 这么经典的东西一定要支持!
[g:01]
正在学习,:11bb :11bb :11bb :11bb :11bb :11bb :11bb :11bb
谢谢楼主的分享.:18bb :18bb
谢谢,一定好好看看!
谢谢楼主分享呀
还是要回复lz一下
谢~~~~~~~~~~~~~~~~~~~~~~~
谢谢了,下载看看!!!!!!!!!!
很好的书,已经买了另外一本
看看先,会有收获的
好东西 新人急需阿 呵呵 谢谢
还没下载全,回复来侃侃而谈
绝对的好东西啊
多谢楼主分享
太大了,谢谢
学了那么多的理论,最缺的就是这些器件!
thanksm man
:9de:9de:9de
谢谢{:6_934:}{:6_934:}{:6_934:}
谢谢楼主的分享
先 下来看看
{:5_214:}
这个资料不错啊,很基础
不错的一本书
看看再说.谢谢楼主的共享精神
非常感谢!
好东西,应该看看
楼主分卷太多了吧
看再说.谢谢楼主的共享精神
{:7_1234:}
好书,学习学习。
好东西!学习@
O(∩_∩)O~,不错,元器件应该弄清楚
多谢楼主
谢谢分享!!!!
老大,怎么总是能搜集这么好的资料……
算是到头啦!
楼主辛苦
谢谢分享!!
知识浅薄  前来学习   看帖必回
谢谢师兄,先看看
最后一个了?
阻抗匹配器件常常用于高频电路中,一般用来匹配元器件的阻抗和电路或系统的特性阻抗。在某些电路中,希望阻抗匹配能够实现多个八度音阶频率覆盖范围,同时插损很低。为了帮助阻抗变压器设计人员,本文对阻抗比为1:4的不平衡到不平衡(unun)宽带阻抗变压器的设计进行了探讨。这种变压器在无线通信系统(一般是混合电路、信号合分路器)中很有用,对放大器链路的级间耦合也很有益。

这种宽带unun阻抗变压器对测试电路、光接收器系统、带宽带阻抗匹配的微波电路,以及天线耦合也很有用。可用于高频电路设计及仿真的现代计算程序在自己的工具箱里就收纳了这种器件。宽带unun阻抗变压器包含了一个缠绕了双绞传输线的环形铁氧体磁芯,绕线间通过釉质膜隔离。结合常规传输线阻抗变压器的设计元件,有可能建立起一个真正的宽带组件。对1:4阻抗转换比而言,这种设计方式可提供很高的效率。


在常规阻抗变压器中,初级线圈和次级线圈之间的能量转移主要通过磁耦合发生,这也是变压器提供良好低频响应能力的原因。假设铁氧体磁芯无损,负载和源阻抗是纯电阻性的,而且只考虑其磁化电感的影响,由此获得的变压器低频简化模型可表示为图2中的结构。在最大能量转移条件下,该低频模型的响应由器件的插损决定:


这里:Pg=源的最大可用功率、Pc=负载功率、Rg=源阻抗、Xm=磁抗。最后这个参数可通过下式由工作频率f和磁芯的磁化电感Lm求得:


Lm的值取决于初级线圈的匝数和磁芯的电感因子Al。通常,这个因子是由铁氧体磁芯制造商规定的,单位为纳亨/平方匝数(nH/turns2)。因此,以nH为单位的磁化电感可表示为:



把该参数带入对应的磁抗公式中,再将计算结果带入插损公式中,即可求得变压器的低端截止频率。因此:


这个值随初级线圈匝数增加而降低。给定截止频率,通过上式也可计算出正确的初级线圈匝数。为了让电感的单位为nH,这里使用了109因子。

传输线变压器初级线圈和次级线圈之间的电耦合增强了高频能量的转移。图3所示为一个传输线1:4 unun变压器的高频模型,鉴于其长度很短,没有考虑损耗。在这种理想模型中,源和负载阻抗都假设是纯电阻性的。该高频模型响应也由它的插损来确定。此外,源功率和二次负载功率间的比率为:


这里:Rg=源阻抗、Rc=负载阻抗、Zo=传输线特性阻抗、βl=相位因子、l=kλ=传输线长度(这里λ是波长,k是小数值)。


由公式5可看出,要获得良好的宽带高频响应,Zo值的优化十分重要。对二分之一波长(λ/2)的传输线长度,能量转移是无效的,并比四分之一波长(λ/4)长度的传输线的最大值小1dB。由此可看出,传输线的长度越短,其高频响应的带宽越大。对最大功率传输而言,最佳传输线特性阻抗和负载阻抗分别为





源和负载阻抗之间必需有1:4的转换以实现阻抗匹配。因此,传输线特性阻抗和源及负载阻抗之间的关系可表示为:


若在变压器中使用绞合传输线,通过改变传输线单元长度的绞合次数,可以调节特性阻抗,使之最适合于所需要的通带。单位长度绞合次数增加,特性阻抗将减小。
图4中,对于优化和非优化的特性阻抗值,都把插损看作k的函数。相比采用了优化特性阻抗的情况,特性阻抗非优化时,插损增加,带宽减小。于是,使用绞合传输线很容易获得最佳特性阻抗值。


为了比较,我们使用了Agilent Technologies公司的ADS(Advanced Design System)计算机辅助工程(CAE)软件套件对性能进行仿真,同时用商用微波矢量网络分析仪(VNA)对设计原型进行测量。分析结果显示了负载功率和源功率之间的关系。


为了测定变压器的低频响应,必需知道铁氧体磁芯的特性,因为电感因子Al与特定频率有关。除此之外,还需获知源的内部阻抗(Rg),这样设计人员可以求得低频截止频率(fi),然后运用公式4就能够计算出所需要的初级线圈匝数(Np)。要确定高频响应,需要知道传输线在所需要的工作频率上的一些特性值,比如特性阻抗(Zo),传播速度(vp),以及相位因子(β)。有了源阻抗值(Rg)和负载阻抗(Rc)值,就可以根据公式6求出特性阻抗(Zopt)的最佳理论值。知道了传输线的各特性值,高频截止频率(fs)和传输线的实际特性阻抗Zo,就有可能计算出传播速度(vp)和相位因子(β)。利用实际的特性阻抗值Zo,它和Zopt之间的差就可以确定,最后求出fs下的插损。图4显示了如何通过实际特性阻抗(Zo)和插损求得k值。已知k、vp和fs值,就可以可通过下式计算出达到以往规格所需的传输线长度(l):

MathWorks的MATLAB数学分析软件曾被用来分析这种变压器器件模型的响应。分析中,把单独的低频(公式1)响应和高频(公式5)响应的插损响应结合在了一起。将所需的目标值代入MATLAB公式,可获得宽带变压器的最终响应。为了执行MATLAB模型数值响应的电气仿真,使用了ADS建模软件。该软件有一个很有用的内部源模型,称为XFERRUTH,其变量参数包括匝数(N)、电感因子(AL)、传输线特性阻抗(Z)、传输线电气长度(E),以及计算传输线长度所需要的参考频率(F)。


为了对变压器响应进行散射参数(S参数)仿真,ADS采用它的S_Param建模器,按照规定的步长和刻度步长调节初始(开始)的和最终(停止)的扫频频率。源和负载阻抗由一个阻抗值为Z的、被称为Term的特殊终端表示。图5所示为ADS仿真中所用的电路。
测量在Advantest的一个商用VNA,300kHz至3.8GHz模型R3765CG上进行。这个分析仪配有50Ω端接阻抗的非平衡测试端口。由于宽带unun阻抗变压器具有非平衡终端,转换比率为1:4,为了让该器件与测试设备相匹配,需要另一个转换比率为4:1的器件来执行阻抗转换。图6和图7显示了所有的终端连接。测试终端和所有用于VNA的线缆都经过校准,以最大限度地减少它们出现错误的可能性。插损和通带响应利用表示为对数幅值形式的传输系数S21来分析。



我们对几种测量条件下的分析式(MATLAB)、数值式(ADS)和实验模型的结果进行了比较。实验中采用了Sontag Componentes Eletronicos的环形铁氧体磁芯模型E1003C5。它的几何和电磁数据包括10mm的外直径、5mm的内直径,3mm的宽度,11的相对磁导率(μr),以及4.2nH/匝数2的电感因子(Al)。该模型专门用于500kHz~50MHz的频率范围。每厘米传输线长度绞合次数为5,使用30AWG导体传输线。在130MHz,传输线的特性阻抗为38Ω,相位因子(β)为4.5501rad/m,传播速度(vp)为1.7952x108m/s。对于50Ω的源阻抗,根据公式8,最佳特性阻抗值必然为100Ω,意味着0.38倍的关系。这种偏差和3dB插损下的k值为0.2207。



构建的第一个器件线圈匝数为4,因此传输线长度为9cm。图8、9和10分别显示了分析、数值和实验三种情况下的频率插损行为。表中总结了主要的参数值,包括最大幅值、-3dB频率(fmax、fi-3dB和fs-3dB)、适当的带宽(BW),以及相比模型值频率偏差百分比下的各种插损结果。通过分析、数值和实验方法获得的结果间的偏差非常小,信号频率最大时例外。这都是由于测量设置中噪声和其它寄生效应造成的测试系统的局限性。在幅度基本稳定的测试频带上,信号电平的变化是几乎察觉不到的,也许这就是最大信号幅度频率的报告中出现偏差的原因。




构建的第二个器件线圈匝数为6,传输线长度11cm。随匝数的增加,低端截止频率降低,高端截止频率也因传输线长度的增加而降低。对于低端截止频率,分析方法和数值方法的结果和预期值一样。但实验响应与理论模型却非完全吻合。但高频响应的值正如预期,三种方法获得的结果吻合良好。
由图11、12和13可看出,在分析、数值和实验三种情况下,插损都是频率的函数(也可从表中看出)。由于模型本身的不完善性,分析和数值结果间有微小偏差。另一方面,实验结果证明了模型的正确性,但低频限值处例外,这里出现的误差最大。其原因在于理论模型没有考虑到变压器中各元件的所有寄生因素。


为了进行进一步的比较,我们构建一个匝数为8,传输线长度为14cm的变压器。图14、15和16分别总结了利用分析、数值和实验方法获得的结果。在低端截止频率上,分析方法和数值方法的结果一致,但实验结果与理论模型不吻合。不过,在高端截止频率获得的值彼此相近,也接近预期值。随着匝数增加,低端截止频率降低;类似地,随传输线长度增加,高端截止频率也降低。



尽管三组结果是由不同的方法求出的,但它们彼此吻合良好。分析(MATLAB)和数值(ADS)模型获得的响应与实验获得的响应(VNA测量值)比较起来十分接近。利用分析和数值方法获得的值近似相等,但与实验结果相比有少许差异。最好的解释是,理论模型没有把变压器结构中所采用的各元件的复杂特性完全考虑在内,而是按照几乎“理想”的元件来建模的。

这些模型公式代表了一个线圈变压器的等效电路简化模型。最新研究表明,我们需要采用一种能够把电阻性和电抗性效应随频率和匝数增加的变化考虑在内的更精密的模型。

这些先进的模型还考虑到了匝间电容的影响,这种影响会降低电感的自谐频率。不过,尽管如此,本文中的简化设计公式仍可以给出很有意义的结果,能够取代1:4阻抗变压器设计中常常涉及到的更麻烦的经验式处理方法。正如这些简化公式所示,它们可用来设计频率范围很宽的(三个八度音阶)低插损、低成本变压器。
方大同认购合同合同
你所,最后了还来个回复,哎,说啥好呢
这在弄这方面的事情,灰常感谢
谢谢版主,我下的好辛苦啊。
谢谢版主,我下的好辛苦啊。
谢谢楼主!
好人,好书!
好东西
谢谢分享。。。。。。
客服中心 搜索
关于我们
关于我们
关注我们
联系我们
帮助中心
资讯中心
企业生态
社区论坛
服务支持
资源下载
售后服务
推广服务
关注我们
官方微博
官方空间
官方微信
返回顶部