搜索附件  
头雁微网 附件中心 技术应用 情报信息 Engheta_Metamaterials-Physics and Engineering Explorations: Engheta_Metamaterials-Physics and Engineering Explorations.part6.rar
板块导航
附件中心&附件聚合2.0
For Discuz! X3.5 © hgcad.com

Engheta_Metamaterials-Physics and Engineering Explorations: Engheta_Metamaterials-Physics and Engineering Explorations.part6.rar

 

Engheta_Metamaterials-Physics and Engineering Explorations:
<Engheta_Metamaterials-Physics and Engineering Explorations>

CONTENTS
Preface xv
Contributors xix
PART I
DOUBLE-NEGATIVE (DNG) METAMATERIALS 1
SECTION I
THREE-DIMENSIONAL VOLUMETRIC DNG METAMATERIALS 3
CHAPTER 1 INTRODUCTION, HISTORY, AND SELECTED TOPICS IN
FUNDAMENTAL THEORIES OF METAMATERIALS 5
Richard W. Ziolkowski and Nader Engheta
1.1 Introduction 5
1.2 Wave Parameters in DNG Media 9
1.3 FDTD Simulations of DNG Media 10
1.4 Causality in DNG Media 11
1.5 Scattering from a DNG Slab 13
1.6 Backward Waves 16
1.7 Negative Refraction 17
1.8 Phase Compensation with a DNG Medium 19
1.9 Dispersion Compensation in a Transmission Line Using a DNG Medium 21
1.10 Subwavelength Focusing with a DNG Medium 23
1.11 Metamaterials with a Zero Index of Refraction 32
1.12 Summary 37
References 37
CHAPTER 2 FUNDAMENTALS OF WAVEGUIDE AND ANTENNA APPLICATIONS
INVOLVING DNG AND SNG METAMATERIALS 43
Nader Engheta, Andrea Al` u, Richard W. Ziolkowski, and
Aycan Erentok
2.1 Introduction 43
2.2 Subwavelength Cavities and Waveguides 44
2.3 Subwavelength Cylindrical and Spherical Core–Shell Systems 54
2.4 ENG–MNG and DPS–DNG Matched Metamaterial Pairs for Resonant
Enhancements of Source-Generated Fields 60
2.5 Efficient, Electrically Small Dipole Antennas: DNG Nested Shells 62
2.6 Efficient, Electrically Small Dipole Antennas: ENG Nested Shells—Analysis 70
2.7 Efficient, Electrically Small Dipole Antennas: HFSS Simulations of Dipole–ENG
Shell Systems 73
2.8 Metamaterial Realization of an Artificial Magnetic Conductor for Antenna
Applications 76
2.9 Zero-Index Metamaterials for Antenna Applications 80
2.10 Summary 83
References 83
CHAPTER 3 WAVEGUIDE EXPERIMENTS TO CHARACTERIZE PROPERTIES
OF SNG AND DNG METAMATERIALS 87
Silvio Hrabar
3.1 Introduction 87
3.2 Basic Types of Bulk Metamaterials with Inclusions 88
3.2.1 Thin-Wire Epsilon-Negative (ENG) Metamaterial 88
3.2.2 SRR Array Mu-Negative (MNG) Metamaterial 89
3.2.3 DNG Metamaterial Based on Thin Wires and SRRs 91
3.3 Theoretical Analysis of Rectangular Waveguide Filled with General
Metamaterial 91
3.4 Investigation of Rectangular Waveguide Filled with 2D Isotropic ENG
Metamaterial 96
3.5 Investigation of Rectangular Waveguide Filled with 2D Isotropic MNG
Metamaterial 99
3.6 Investigation of Rectangular Waveguide Filled with 2D Uniaxial MNG
Metamaterial 100
3.7 Investigation of Rectangular Waveguide Filled with 2D Isotropic DNG
Metamaterial 105
3.8 Investigation of Subwavelength Resonator 106
3.9 Conclusions 110
References 110
CHAPTER 4 REFRACTION EXPERIMENTS IN WAVEGUIDE
ENVIRONMENTS 113
Tomasz M. Grzegorczyk, Jin Au Kong, and Ran Lixin
4.1 Introduction 113
4.2 Microscopic and Macroscopic Views of Metamaterials 114
4.2.1 Microscopic View: Rods and Rings as Building Blocks of
Metamaterials 114
4.2.2 Macroscopic View: Effective Medium with Negative Constitutive
Parameters 116
4.2.2.1 Modeling Metamaterials 116
4.2.2.2 Properties of Metamaterials 118
4.3 Measurement Techniques 123
4.3.1 Experimental Constraints 123
4.3.1.1 Obtaining a Plane-Wave Incidence 123
4.3.1.2 Contacting Issue with Waveguide Walls 125
4.3.2 Measurements of Various Rings 125
4.3.2.1 Axially Symmetric SRR 125
4.3.2.2 Omega () SRR 128
4.3.2.3 Solid-State Structure 131
4.3.2.4 S Ring 135
4.4 Conclusion 138
Acknowledgments 138
References 139
SECTION II
TWO-DIMENSIONAL PLANAR NEGATIVE-INDEX STRUCTURES 141
CHAPTER 5 ANTENNA APPLICATIONS AND SUBWAVELENGTH FOCUSING
USING NEGATIVE-REFRACTIVE-INDEX TRANSMISSION LINE
STRUCTURES 143
George V. Eleftheriades
5.1 Introduction 143
5.2 Planar Transmission Line Media with Negative Refractive Index 144
5.3 Zero-Degree Phase-Shifting Lines and Applications 145
5.3.1 Nonradiating Metamaterial Phase-Shifting Lines 149
5.3.2 Series-Fed Antenna Arrays with Reduced Beam Squinting 150
5.3.3 Broadband Wilkinson Balun Using Microstrip Metamaterial
Lines 153
5.3.4 Low-Profile and Small Ring Antennas 157
5.4 Backward Leaky-Wave Antenna Radiating in Its Fundamental Spatial
Harmonic 160
5.5 Superresolving NRI Transmission Line Lens 162
5.6 Detailed Dispersion of Planar NRI-TL Media 164
Acknowledgments 167
References 167
CHAPTER 6 RESONANCE CONE ANTENNAS 171
Keith G. Balmain and Andrea A. E. L¨ uttgen
6.1 Introduction 171
6.2 Planar Metamaterial, Corner-Fed, Anisotropic Grid Antenna 172
6.3 Resonance Cone Refraction Effects in a Low-Profile Antenna 181
6.4 Conclusions 189
Acknowledgments 189
References 189
CHAPTER 7 MICROWAVE COUPLER AND RESONATOR APPLICATIONS OF NRI
PLANAR STRUCTURES 191
Christophe Caloz and Tatsuo Itoh
7.1 Introduction 191
7.2 Composite Right/Left-Handed Transmission Line Metamaterials 192
7.2.1 Left-Handed Transmission Lines 192
7.2.2 Composite Right/Left-Handed Structures 192
7.2.3 Microwave Network Conception and Characteristics 195
7.2.4 Microstrip Technology Implementation 197
7.3 Metamaterial Couplers 198
7.3.1 Symmetric Impedance Coupler 198
7.3.2 Asymmetric Phase Coupler 202
7.4 Metamaterial Resonators 205
7.4.1 Positive, Negative, and Zero-Order Resonance in CRLH
Resonators 205
7.4.2 Zero-Order Antenna 207
7.4.3 Dual-Band Ring Antenna 208
7.5 Conclusions 209
References 209
PART II
ELECTROMAGNETIC BANDGAP (EBG) METAMATERIALS 211
SECTION I
THREE-DIMENSIONAL VOLUMETRIC EBG MEDIA 213
CHAPTER 8 HISTORICAL PERSPECTIVE AND REVIEW OF FUNDAMENTAL
PRINCIPLES IN MODELING THREE-DIMENSIONAL PERIODIC
STRUCTURES WITH EMPHASIS ON VOLUMETRIC EBGs 215
Maria Kafesaki and Costas M. Soukoulis
8.1 Introduction 215
8.1.1 Electromagnetic (Photonic) Bandgap Materials or Photonic
Crystals 215
8.1.2 Left-Handed Materials or Negative-Index Materials 219
8.2 Theoretical and Numerical Methods 221
8.2.1 Plane-Wave Method 222
8.2.2 Transfer Matrix Method 225
8.2.3 Finite-Difference Time-Domain Method 228
8.3 Comparison of Different Numerical Techniques 232
8.4 Conclusions 233
Acknowledgments 233
References 234
CHAPTER 9 FABRICATION, EXPERIMENTATION, AND APPLICATIONS OF EBG
STRUCTURES 239
Peter de Maagt and Peter Huggard
9.1 Introduction 239
9.2 Manufacturing 241
9.2.1 Manufacture of 3D EBGs by Machining from the Solid 241
9.2.2 Manufacture of 3D EBGs by Stacking 242
9.2.3 Manufacture of 3D EBGs by Growth 244
9.2.4 Effect of Tolerances in Manufacture of EBGs 245
9.3 Experimental Characterization of EBG Crystals 245
9.3.1 Surface Wave Characterization 246
9.3.2 Complex Reflectivity Measurements 248
9.3.3 Terahertz Reflection and Transmission Measurements 250
9.4 Current and Future Applications of EBG Systems 252
9.5 Conclusions 256
References 257
CHAPTER 10 SUPERPRISM EFFECTS AND EBG ANTENNA APPLICATIONS 261
Boris Gralak, Stefan Enoch, and G&#180;erard Tayeb
10.1 Introduction 261
10.2 Refractive Properties of a Piece of Photonic Crystal 262
10.2.1 General Hypotheses 262
10.2.1.1 Hypotheses on Electromagnetic Field 262
10.2.1.2 Hypotheses on Geometry 263
10.2.2 Rigorous Theory 264
10.2.2.1 Floquet–Bloch Transform and Decomposition of Initial
Problem 264
10.2.2.2 Field Coupling at Plane Interface 265
10.2.2.3 Propagation of Electromagnetic Energy 268
10.3 Superprism Effect 271
10.3.1 Group Velocity Effect 271
10.3.2 Phase Velocity Effect 272
10.3.3 Chromatic Dispersion Effect 273
10.4 Antenna Applications 276
10.5 Conclusion 281
References 282
SECTION II
TWO-DIMENSIONAL PLANAR EBG STRUCTURES 285
CHAPTER 11 REVIEW OF THEORY, FABRICATION, AND APPLICATIONS OF
HIGH-IMPEDANCE GROUND PLANES 287
Dan Sievenpiper
11.1 Introduction 287
11.2 Surface Waves 289
11.3 High-Impedance Surfaces 290
11.4 Surface Wave Bands 291
11.5 Reflection Phase 294
11.6 Bandwidth 295
11.7 Design Procedure 297
11.8 Antenna Applications 299
11.9 Tunable Impedance Surfaces 302
11.10 Reflective-Beam Steering 303
11.11 Leaky-Wave Beam Steering 305
11.12 Backward Bands 307
11.13 Summary 309
References 309
CHAPTER 12 DEVELOPMENT OF COMPLEX ARTIFICIAL GROUND PLANES IN
ANTENNA ENGINEERING 313
Yahya Rahmat-Samii and Fan Yang
12.1 Introduction 313
12.2 FDTD Analysis of Complex Artificial Ground Planes 315
12.2.1 Bandgap Characterizations of an EBG Structure 315
12.2.2 Modal Diagram and Scattering Analysis of EBG Structure 317
12.3 Various Complex Artificial Ground-Plane Designs 319
12.3.1 Parametric Study of EBG Ground Plane 319
12.3.2 Polarization-Dependent EBG (PDEBG) Surface Designs 321
12.3.3 Characterizations of Grounded Slab Loaded with Periodic
Patches 324
12.4 Applications of Artificial Ground Planes in Antenna Engineering 324
12.4.1 Enhanced Performance of Microstrip Antennas and Arrays 324
12.4.2 Dipole Antenna on EBG Ground Plane: Low-Profile Design 329
12.4.2.1 Comparison of PEC, PMC, and EBG Ground Planes 329
12.4.2.2 Operational Frequency Band of EBG Structure 331
12.4.3 Novel Surface Wave Antenna Design for Wireless
Communications 333
12.4.3.1 Antenna Performance 333
12.4.3.2 Radiation Mechanism 335
12.4.4 Low-Profile Circularly Polarized Antennas: Curl and Dipole
Designs 337
12.4.4.1 Curl Antenna on EBG Ground Plane 337
12.4.4.2 Single-Dipole Antenna Radiating CP Waves 339
12.4.5 Reconfigurable Wire Antenna with Radiation Pattern Diversity 341
12.5 Summary 346
References 346
CHAPTER 13 FSS-BASED EBG SURFACES 351
Stefano Maci and Alessio Cucini
13.1 Introduction 351
13.1.1 Quasi-Static Admittance Models 352
13.1.2 Chapter Outline 353
13.2 MoM Solution 354
13.2.1 Patch-Type FSS (Electric Current Approach) 354
13.2.2 Aperture-Type FSS (Magnetic Current Approach) 357
13.2.3 Dispersion Equation 357
13.3 Accessible Mode Admittance Network 358
13.3.1 Patch-Type FSS 359
13.3.2 Aperture-Type FSS 359
13.3.3 Dispersion Equation in Terms of Accessible Modes 360
13.4 Pole–Zero Matching Method for Dispersion Analysis 361
13.4.1 Dominant-Mode Two-Port Admittance Network 361
13.4.2 Diagonalization of FSS Admittance Matrix 363
13.4.3 Foster’s Reactance Theorem and Rational Approximation of
Eigenvalues 365
13.4.4 Poles and Zeros of FSS and Metamaterial Admittance 366
13.4.5 Analytical Form of Dispersion Equation 369
CHAPTER 12 DEVELOPMENT OF COMPLEX ARTIFICIAL GROUND PLANES IN
ANTENNA ENGINEERING 313
Yahya Rahmat-Samii and Fan Yang
12.1 Introduction 313
12.2 FDTD Analysis of Complex Artificial Ground Planes 315
12.2.1 Bandgap Characterizations of an EBG Structure 315
12.2.2 Modal Diagram and Scattering Analysis of EBG Structure 317
12.3 Various Complex Artificial Ground-Plane Designs 319
12.3.1 Parametric Study of EBG Ground Plane 319
12.3.2 Polarization-Dependent EBG (PDEBG) Surface Designs 321
12.3.3 Characterizations of Grounded Slab Loaded with Periodic
Patches 324
12.4 Applications of Artificial Ground Planes in Antenna Engineering 324
12.4.1 Enhanced Performance of Microstrip Antennas and Arrays 324
12.4.2 Dipole Antenna on EBG Ground Plane: Low-Profile Design 329
12.4.2.1 Comparison of PEC, PMC, and EBG Ground Planes 329
12.4.2.2 Operational Frequency Band of EBG Structure 331
12.4.3 Novel Surface Wave Antenna Design for Wireless
Communications 333
12.4.3.1 Antenna Performance 333
12.4.3.2 Radiation Mechanism 335
12.4.4 Low-Profile Circularly Polarized Antennas: Curl and Dipole
Designs 337
12.4.4.1 Curl Antenna on EBG Ground Plane 337
12.4.4.2 Single-Dipole Antenna Radiating CP Waves 339
12.4.5 Reconfigurable Wire Antenna with Radiation Pattern Diversity 341
12.5 Summary 346
References 346
CHAPTER 13 FSS-BASED EBG SURFACES 351
Stefano Maci and Alessio Cucini
13.1 Introduction 351
13.1.1 Quasi-Static Admittance Models 352
13.1.2 Chapter Outline 353
13.2 MoM Solution 354
13.2.1 Patch-Type FSS (Electric Current Approach) 354
13.2.2 Aperture-Type FSS (Magnetic Current Approach) 357
13.2.3 Dispersion Equation 357
13.3 Accessible Mode Admittance Network 358
13.3.1 Patch-Type FSS 359
13.3.2 Aperture-Type FSS 359
13.3.3 Dispersion Equation in Terms of Accessible Modes 360
13.4 Pole–Zero Matching Method for Dispersion Analysis 361
13.4.1 Dominant-Mode Two-Port Admittance Network 361
13.4.2 Diagonalization of FSS Admittance Matrix 363
13.4.3 Foster’s Reactance Theorem and Rational Approximation of
Eigenvalues 365
13.4.4 Poles and Zeros of FSS and Metamaterial Admittance 366
13.4.5 Analytical Form of Dispersion Equation 369
Engheta_Metamaterials-Physics and Engineering Explorations
Engheta_Metamaterials-Physics and Engineering Explorations
Engheta_Metamaterials-Physics and Engineering Explorations
Engheta_Metamaterials-Physics and Engineering Explorations
Engheta_Metamaterials-Physics and Engineering Explorations
Engheta_Metamaterials-Physics and Engineering Explorations
Engheta_Metamaterials-Physics and Engineering Explorations
:shy :shy :shy
不错的书,顶起!
好书啊,收藏了,谢谢楼主的分享:11bb
谢谢楼主,下下来自己藏着,呵呵。
这帖子,顶到底了,必须的,谁不顶就下简直木有人性哈。。。
感谢分享 :11bb :27bb :31bb
边下边顶   好书! 谢谢!:9de :9de
thanks.......................................
挺全面的一本书,支持!!:11bb :11bb
好书啊 !!!先谢谢
:11bb :11bb :11bb :11bb
下载,收藏了。谢谢楼主喽
Try see see !
谢谢楼主的分享!
thank you for the working
谢谢!!!!!!!!!!!!
多谢LZ!!!
收藏了
It is a high valuable book worth to have deep learning just view from the contents and subjects it tackle to.
Thanks a lot.
這麼好的一本書分享
怎麼能不頂一下呢
頂............
貌似很强大的一本书,题目都看不懂:43bb
电磁超介质(Metamaterials)是一种具有天然媒质所不具备的超常物理性质的人工复合结构或复合媒质,其研究内容主要包括左手材料、复合左/右手传输线和光子晶体等。电磁超介质的提出和人工实现改变了人们对两个物理量即介电常数和磁导率的传统认识,突破了传统电磁场理论的一些重要概念,堪称麦克斯韦电磁理论建立以来的又一个里程碑式的重大发现,并且有很多极具利用价值的奇异特性,必将在天线、微波/毫米波电路器件、武器装备、军事隐身等领域获得广泛的应用。光子晶体被美国Science杂志评为1999年度九大科学成果之一,左手材料的发现被美国Science杂志评为 2003年度十大科学突破之一,基于左手材料思想设计的梯度超介质实现电磁波隐形被美国Science杂志评为2006年度十大科学突破之一,电磁超介质是当前电磁学和物理研究领域中的前沿与热点问题。
谢谢楼主分享
好好学习,谢谢了{:6_928:}{:6_935:}
Thank you for your sharing
thank you very much!
好书! 谢谢!
顶顶顶顶顶
顶一下{:7_1234:}
好东西啊!
好书,要收藏啊!
感谢楼主{:7_1234:}
這本書是想進入超材料領或必讀的一本書
感谢楼主分享
谢谢楼主,自己藏着!
下载,收藏了。谢谢楼主喽
经典收藏了,谢谢楼主
必须顶起!
谢谢楼主的分享:46bb
感谢分享!
客服中心 搜索
关于我们
关于我们
关注我们
联系我们
帮助中心
资讯中心
企业生态
社区论坛
服务支持
资源下载
售后服务
推广服务
关注我们
官方微博
官方空间
官方微信
返回顶部