Adaptive.Antennas.For.CDMA.WIRELESS.Networks.(1996).pdf:Adaptive.Antennas.For.CDMA.WIRELESS.Networks.(1996).pdf
A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
By
Ayman F. Naguib
August 1996
Copyright by Ayman F. Naguib 1996
All Rights Reserved ii
Abstract
Wireless cellular communication is witnessing a rapid growth in markets, technology, and
range of services. A major current thrust for cellular communication systems is improved
economics through enhanced coverage early in the life cycle of a network and high spectrum
efficiency later in the life cycle. An attractive approach for economical, spectrally efficient,
and high quality digital cellular and personal communication services (PCS) is the use of
spread spectrum modulation with code division multiple access (CDMA) technology. Yet
another very promising dimension for improving performance of all types of cellular networks
is the use of antenna arrays at the base station. This thesis explores techniques for
integrating these two dimensions.
We study the use of multiple antennas at the base station and the associated advanced
signal processing in CDMA wireless networks. Our focus is on the mobile to base or reverse
link. We begin with a space-time cellular channel model for spread spectrum networks.
We then describe the appropriate signal and interference models. We then propose
a ”Beamformer-RAKE” receiver structure for exploiting multiple antennas at the base station.
An estimator for the beamforming weight vector in the presence of angle and Doppler
spreads is derived using a code filtering approach and its tracking performance is established.
The above Beamformer-RAKE structure is then applied to a specific M-ary orthogonal
modulation and noncoherent RAKE combining receiver used in an existing interim CDMA
standard. We propose an overall antenna array base station receiver architecture for this
iv
system and study the system performance in terms of BER and power control loop performance.
The effect of angle spread, number of antennas, multiple resolved paths and Doppler
spread are studied.
Contents
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
1 Introduction 1
1.1 Cellular Systems and Standards . . . . . . . . . . . . . . . . . . . . 3
1.1.1 European Global System for Mobile (GSM) . . . . . . . . . . 5
1.1.2 North American TDMA Digital Cellular (IS-54) . . . . . . . . 7
1.1.3 North American CDMA Digital Cellular (IS-95) . . . . . . . . 8
1.2 Why Antenna Arrays? . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2 Description and Modeling of Wireless Channels 13
2.1 Fundamentals of Radio Propagation . . . . . . . . . . . . . . . . . . 14
2.1.1 Propagation Path Loss . . . . . . . . . . . . . . . . . . . . . 16
2.1.2 Multipath Fast Fading . . . . . . . . . . . . . . . . . . . . . 19
2.1.3 Log-Normal Slow Fading . . . . . . . . . . . . . . . . . . . 25
2.2 Vector Multipath Channels . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.1 Array Response Vector . . . . . . . . . . . . . . . . . . . . . 27
viii
2.2.2 Vector Channel Modeling . . . . . . . . . . . . . . . . . . . 31
2.2.3 Path Amplitudes and Power-Delay Profile . . . . . . . . . . . 41
2.3 Cellular Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.3.1 Macro Cells . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.3.2 Micro Cells . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.3.3 Pico or Indoor Cells . . . . . . . . . . . . . . . . . . . . . . 44
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3 Adaptive Beamforming with Antenna Arrays 46
3.1 Adaptive Beamforming Techniques . . . . . . . . . . . . . . . . . . . 48
3.1.1 Direction-Finding Based Beamforming . . . . . . . . . . . . . 49
3.1.2 Beamforming Based on Training-Signals . . . . . . . . . . . . 54
3.1.3 Signal-Structure-Based Beamforming . . . . . . . . . . . . . 55
3.2 Adaptive Beamforming for Wireless CDMA . . . . . . . . . . . . . . 57
3.2.1 CDMA Signal Models . . . . . . . . . . . . . . . . . . . . . 58
3.2.2 Code-Filtering Approach for Adaptive Beamforming . . . . . . 60
3.3 CDMA Beamforming with Multipath . . . . . . . . . . . . . . . . . . 65
3.3.1 Space-Time Matched Filter . . . . . . . . . . . . . . . . . . . 67
3.3.2 Beamformer-RAKE Receiver Structure . . . . . . . . . . . . . 69
3.3.3 A Simulation Example . . . . . . . . . . . . . . . . . . . . . 72
3.4 ”Beamformer-RAKE” Receiver Examples . . . . . . . . . . . . . . . 75
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4 Beamforming for Time-Variant Channels 83
4.1 Recursive Adaptive Beamforming . . . . . . . . . . . . . . . . . . . 84
4.1.1 Recursive Estimation of the Channel Vector . . . . . . . . . . 85
4.1.2 Time-Update of Covariance Estimates . . . . . . . . . . . . . 87
4.1.3 Algorithm Summary . . . . . . . . . . . . . . . . . . . . . . 92
ix
4.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5 Overview of the IS-95 CDMA Standard 100
5.1 CDMA Forward Link . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.2 CDMA Reverse Link . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6 CDMA Base Station Receiver with Antenna Arrays 108
6.1 Received Signal Vector Model . . . . . . . . . . . . . . . . . . . . . 110
6.2 Receiver Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.3 Signal Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.3.1 Noise Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.3.2 Self and Multiple Access Interference Analysis . . . . . . . . . 119
6.3.3 Decision Statistics . . . . . . . . . . . . . . . . . . . . . . . 122
6.4 Probability of Error Analysis . . . . . . . . . . . . . . . . . . . . . . 123
6.4.1 Low Doppler Frequency . . . . . . . . . . . . . . . . . . . . 124
6.4.2 High Doppler Frequency . . . . . . . . . . . . . . . . . . . . 126
6.5 Numerical and Simulation Results . . . . . . . . . . . . . . . . . . . 129
6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7 Performance of Power Control in CDMA 138
7.1 CDMA Reverse Link Open Loop Power Control . . . . . . . . . . . . 140
7.2 CDMA Reverse Link Closed Loop Power Control . . . . . . . . . . . 141
7.3 Closed Loop Power Control Model . . . . . . . . . . . . . . . . . . . 142
7.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
x
8 Conclusions 154
8.1 Thesis Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
8.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
A Multipath Fading Correlation 157
A.1 Fading Correlation for Scalar Channels . . . . . . . . . . . . . . . . . 157
A.2 Fading Correlation for Vector Channels . . . . . . . . . . . . . . . . . 158
B Probability Distributions 162
Bibliography 165
xi
List of Tables
3.1 Optimum weight vector for SINR, ML, and MMSE performance measures 54
3.2 Estimated multipath parameters . . . . . . . . . . . . . . . . . . . . . . 73
4.1 Power recursion for estimating principal eigenvector . . . . . . . . . . . 86
4.2 Inverse square root time-update . . . . . . . . . . . . . . . . . . . . . . 89
4.3 Beamforming algorithm summary . . . . . . . . . . . . . . . . . . . . . 91
4.4 Floating point operations count . . . . . . . . . . . . . . . . . . . . . . 93
6.1 Percent reduction in capacity at Pˆb = 10−2 and Pˆb = 10−3 for high Doppler
frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
CDMA pdf Adaptive Antennas WIRELESS
如果没有翻译错,应该是智能天线的资料吧?
还是先回去看看英语再来下载了!◎◎
谢谢分享,尽管是比较老的资料,不过对我来讲还是很新的资料!!
不知道 自适用天线和智能天线有什么区别??
thank you !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
多谢楼主哈,辛苦了哈
一本名校的博士論文
謝謝樓主的分享
Thank you for your sharing
好资料,标记。。。。