搜索附件  
头雁微网 附件中心 后勤保障 档案室 smart antennas(electrical engineering applied signal processing series).part2.rar
板块导航
附件中心&附件聚合2.0
For Discuz! X3.5 © hgcad.com

smart antennas(electrical engineering applied signal processing series).part2.rar

 

Smart Antennas(Godara, Lal Chand):
【发帖际遇】: qche111被小贼们打劫金币10元.



书 名:Smart Antennas (Electrical Engineering & Applied Signal Processing Series)
可以译为:《灵敏天线》
作 者:Godara, Lal Chand.
语 言:英文
格 式:PDF
ISBN:084931206X
出版商:CRC Press
出 版:2004年
页数:457
内容简介:(中文)
本书介绍了用于窄带领域的不同处理结构形式,探索了自适应过程,重点介绍简单矩阵的转化算法等等。最后还指出了灵敏天线也适合于宽带信号。
目录:
1  Introduction
1.1  Antenna Gain
1.2  Phased Array Antenna
1.3  Power Pattern
1.4  Beam Steering
1.5  Degree of Freedom
1.6  Optimal Antenna
1.7  Adaptive Antenna
1.8  Smart Antenna
1.9  Book Outline
References
2  Narrowband Processing
2.1  Signal Model
2.1.1  Steering Vector Representation
2.1.2  Eigenvalue Decomposition
2.2  Conventional Beamformer
2.2.1  Source in Look Direction
2.2.2  Directional Interference
2.2.3  Random Noise Environment
2.2.4  Signal-to-Noise Ratio
2.3  Null Steering Beamformer
2.4  Optimal Beamformer
2.4.1  Unconstrained Beamformer
2.4.2  Constrained Beamformer
2.4.3  Output Signal-to-Noise Ratio and Array Gain
2.4.4  Special Case 1: Uncorrelated Noise Only
2.4.5  Special Case 2: One Directional Interference
2.5  Optimization Using Reference Signal
2.6  Beam Space Processing
2.6.1  Optimal Beam Space Processor
2.6.2  Generalized Side-Lobe Canceler
2.6.3  Postbeamformer Interference Canceler
2.6.3.1  Optimal PIC
2.6.3.2  PIC with Conventional Interference Beamformer
2.6.3.3  PIC with Orthogonal Interference Beamformer
2.6.3.4  PIC with Improved Interference Beamformer
2.6.3.5  Discussion and Comments
2.6.3.5.1  Signal Suppression
2.6.3.5.2  Residual Interference
2.6.3.5.3  Uncorrelated Noise Power
2.6.3.5.4  Signal-to-Noise Ratio
2.6.4 Comparison of Postbeamformer Interference Canceler with Element
Space Processor
2.6.5  Comparison in Presence of Look Direction Errors
2.7  Effect of Errors
2.7.1  Weight Vector Errors
2.7.1.1  Output Signal Power
2.7.1.2  Output Noise Power
2.7.1.3  Output SNR and Array Gain
2.7.2  Steering Vector Errors
2.7.2.1  Noise-Alone Matrix Inverse Processor
2.7.2.1.1  Output Signal Power
2.7.2.1.2  Total Output Noise Power
2.7.2.1.3  Output SNR and Array Gain
2.7.2.2  Signal-Plus-Noise Matrix Inverse Processor
2.7.2.2.1  Output Signal Power
2.7.2.2.2  Total Output Noise Power
2.7.2.2.3  Output SNR
2.7.2.3  Discussion and Comments
2.7.2.3.1  Special Case 1: Uncorrelated Noise Only
2.7.2.3.2  Special Case 2: One Directional Interference
2.7.3  Phase Shifter Errors
2.7.3.1  Random Phase Errors
2.7.3.2  Signal Suppression
2.7.3.3  Residual Interference Power
2.7.3.4  Array Gain
2.7.3.5  Comparison with SVE
2.7.4  Phase Quantization Errors
2.7.5  Other Errors
2.7.6  Robust Beamforming
Notation and Abbreviations
References
3  Adaptive Processing
3.1  Sample Matrix Inversion Algorithm
3.2  Unconstrained Least Mean Squares Algorithm
3.2.1  Gradient Estimate
3.2.2  Covariance of Gradient
3.2.3  Convergence of Weight Vector
3.2.4  Convergence Speed
3.2.5  Weight Covariance Matrix
3.2.6  Transient Behavior of Weight Covariance Matrix
3.2.7  Excess Mean Square Error
3.2.8  Misadjustment
3.3  Normalized Least Mean Squares Algorithm
3.4  Constrained Least Mean Squares Algorithm
3.4.1  Gradient Estimate
3.4.2  Covariance of Gradient
3.4.3  Convergence of Weight Vector
3.4.4  Weight Covariance Matrix
3.4.5  Transient Behavior of Weight Covariance Matrix
3.4.6  Convergence of Weight Covariance Matrix
3.4.7  Misadjustment
3.5  Perturbation Algorithms
3.5.1  Time Multiplex Sequence
3.5.2  Single-Receiver System
3.5.2.1  Covariance of the Gradient Estimate
3.5.2.2  Perturbation Noise
3.5.3  Dual-Receiver System
3.5.3.1  Dual-Receiver System with Reference Receiver
3.5.3.2  Covariance of Gradient
3.5.4  Covariance of Weights
3.5.4.1  Dual-Receiver System with Dual Perturbation
3.5.4.2  Dual-Receiver System with Reference Receiver
3.5.5  Misadjustment Results
3.5.5.1  Single-Receiver System
3.5.5.2  Dual-Receiver System with Dual Perturbation
3.5.5.3  Dual-Receiver System with Reference Receiver
3.6  Structured Gradient Algorithm
3.6.1  Gradient Estimate
3.6.2  Examples and Discussion
3.7  Recursive Least Mean Squares Algorithm
3.7.1  Gradient Estimates
3.7.2  Covariance of Gradient
3.7.3  Discussion
3.8  Improved Least Mean Squares Algorithm
3.9  Recursive Least Squares Algorithm
3.10  Constant Modulus Algorithm
3.11  Conjugate Gradient Method
3.12  Neural Network Approach
3.13  Adaptive Beam Space Processing
3.13.1  Gradient Estimate
3.13.2  Convergence of Weights
3.13.3  Covariance of Weights
3.13.4  Transient Behavior of Weight Covariance
3.13.5  Steady-State Behavior of Weight Covariance
3.13.6  Misadjustment
3.13.7  Examples and Discussion
3.14  Signal Sensitivity of Constrained Least Mean Squares Algorithm
3.15  Implementation Issues
3.15.1  Finite Precision Arithmetic
3.15.2  Real vs. Complex Implementation
3.15.2.1  Quadrature Filter
3.15.2.2  Analytical Signals
3.15.2.3  Beamformer Structures
3.15.2.4  Real LMS Algorithm
3.15.2.5  Complex LMS Algorithm
3.15.2.6  Discussion
Notation and Abbreviations
References
Appendices
4  Broadband Processing
4.1  Tapped-Delay Line Structure
4.1.1  Description
4.1.2  Frequency Response
4.1.3  Optimization
4.1.4  Adaptive Algorithm
4.1.5  Minimum Mean Square Error Design
4.1.5.1  Derivation of Constraints
4.1.5.2  Optimization
4.2  Partitioned Realization
4.2.1  Generalized Side-Lobe Canceler
4.2.2  Constrained Partitioned Realization
4.2.3  General Constrained Partitioned Realization
4.2.3.1  Derivation of Constraints
4.2.3.2  Optimization
4.3  Derivative Constrained Processor
4.3.1  First-Order Derivative Constraints
4.3.2  Second-Order Derivative Constraints
4.3.3  Optimization with Derivative Constraints
4.3.3.1  Linear Array Example
4.3.4  Adaptive Algorithm
4.3.5  Choice of Origin
4.4  Correlation Constrained Processor
4.5  Digital Beamforming
4.6  Frequency Domain Processing
4.6.1  Description
4.6.2  Relationship with Tapped-Delay Line Structure Processing
4.6.2.1  Weight Relationship
4.6.2.2  Matrix Relationship
4.6.2.3 Derivation of Rf(k)
4.6.2.4  Array with Presteering Delays
4.6.2.5  Array without Presteering Delays
4.6.2.6  Discussion and Comments
4.6.3  Transformation of Constraints
4.6.3.1  Point Constraints
4.6.3.2  Derivative Constraints
4.7  Broadband Processing Using Discrete Fourier Transform Method
4.7.1  Weight Estimation
4.7.2  Performance Comparison
4.7.2.1  Effect of Filter Length
4.7.2.2  Effect of Number of Elements in Array
4.7.2.3  Effect of Interference Power
4.7.3  Computational Requirement Comparison
4.7.4  Schemes to Reduce Computation
4.7.4.1  Limited Number of Bins Processing
4.7.4.2  Parallel Processing Schemes
4.7.4.2.1  Parallel Processing Scheme 1
4.7.4.2.2  Parallel Processing Scheme 2
4.7.4.2.3  Parallel Processing Scheme 3
4.7.5  Discussion
4.7.5.1  Higher SNR with Less Processing Time
4.7.5.2  Robustness of DFT Method
4.8  Performance
Notation and Abbreviations
References
5  Correlated Fields
5.1  Correlated Signal Model
5.2  Optimal Element Space Processor
5.3  Optimized Postbeamformer Interference Canceler Processor
5.4  Signal-to-Noise Ratio Performance
5.4.1  Zero Uncorrelated Noise
5.4.2  Strong Interference and Large Number of Elements
5.4.3  Coherent Sources
5.4.4  Examples and Discussion
5.5  Methods to Alleviate Correlation Effects
5.6  Spatial Smoothing Method
5.6.1  Decorrelation Analysis
5.6.2  Adaptive Algorithm
5.7  Structured Beamforming Method
5.7.1  Decorrelation Analysis
5.7.1.1  Examples and Discussion
5.7.2  Structured Gradient Algorithm
5.7.2.1  Gradient Comparison
5.7.2.2  Weight Vector Comparison
5.7.2.3  Examples and Discussion
5.8  Correlated Broadband Sources
5.8.1  Structure of Array Correlation Matrix
5.8.2  Correlated Field Model
5.8.3  Structured Beamforming Method
5.8.4  Decorrelation Analysis
5.8.4.1  Examples and Discussion
Notation and Abbreviations
References
6  Direction-of-Arrival Estimation Methods
6.1  Spectral Estimation Methods
6.1.1  Bartlett Method
6.2  Minimum Variance Distortionless Response Estimator
6.3  Linear Prediction Method
6.4  Maximum Entropy Method
6.5  Maximum Likelihood Method
6.6  Eigenstructure Methods
6.7  MUSIC Algorithm
6.7.1  Spectral MUSIC
6.7.2  Root-MUSIC
6.7.3  Constrained MUSIC
6.7.4  Beam Space MUSIC
6.8  Minimum Norm Method
6.9  CLOSEST Method
6.10  ESPRIT Method
6.11  Weighted Subspace Fitting Method
6.12  Review of Other Methods
6.13  Preprocessing Techniques
6.14  Estimating Source Number
6.15  Performance Comparison
6.16  Sensitivity Analysis
Notation and Abbreviations
References
7  Single-Antenna System  in Fading Channels
7.1  Fading Channels
7.1.1  Large-Scale Fading
7.1.2  Small-Scale Fading
7.1.3  Distribution of Signal Power
7.2  Channel Gain
7.3.  Single-Antenna System
7.3.1  Noise-Limited System
7.3.1.1  Rayleigh Fading Environment
7.3.1.2  Nakagami Fading Environment
7.3.2  Interference-Limited System
7.3.2.1  Identical Interferences
7.3.2.2  Signal and Interference with Different Statistics
7.3.3  Interference with Nakagami Fading and Shadowing
7.3.4  Error Rate Performance
Notation and Abbreviations
References
8  Diversity Combining
8.1  Selection Combiner
8.1.1  Noise-Limited Systems
8.1.1.1  Rayleigh Fading Environment
8.1.1.1.1  Outage Probability
8.1.1.1.2  Mean SNR
8.1.1.1.3  Average BER
8.1.1.2  Nakagami Fading Environment
8.1.1.2.1  Output SNR pdf
8.1.1.2.2  Outage Probability
8.1.1.2.3  Average BER
8.1.2  Interference-Limited Systems
8.1.2.1  Desired Signal Power Algorithm
8.1.2.2  Total Power Algorithm
8.1.2.3  SIR Power Algorithm
8.2  Switched Diversity Combiner
8.2.1  Outage Probability
8.2.2  Average Bit Error Rate
8.2.3  Correlated Fading
8.3  Equal Gain Combiner
8.3.1  Noise-Limited Systems
8.3.1.1  Mean SNR
8.3.1.2  Outage Probability
8.3.1.3  Average BER
8.3.1.4  Use of Characteristic Function
8.3.2  Interference-Limited Systems
8.3.2.1  Outage Probability
8.3.2.2  Mean Signal Power to Mean Interference Power Ratio
8.4  Maximum Ratio Combiner
8.4.1  Noise-Limited Systems
8.4.1.1  Mean SNR
8.4.1.2  Rayleigh Fading Environment
8.4.1.2.1  PDF of Output SNR
8.4.1.2.2  Outage Probability
8.4.1.2.3  Average BER
8.4.1.3  Nakagami Fading Environment
8.4.1.4  Effect of Weight Errors
8.4.1.4.1  Output SNR pdf
8.4.1.4.2  Outage Probability
8.4.1.4.3  Average BER
8.4.2  Interference-Limited Systems
8.4.2.1  Mean Signal Power to Interference Power Ratio
8.4.2.2  Outage Probability
8.4.2.3  Average BER
8.5  Optimal Combiner
8.5.1  Mean Signal Power to Interference Power Ratio
8.5.2  Outage Probability
8.5.3  Average Bit Error Rate
8.6  Generalized Selection Combiner
8.6.1  Moment-Generating Functions
8.6.2  Mean Output Signal-to-Noise Ratio
8.6.3  Outage Probability
8.6.4  Average Bit Error Rate
8.7  Cascade Diversity Combiner
8.7.1  Rayleigh Fading Environment
8.7.1.1  Output SNR pdf
8.7.1.2  Outage Probability
8.7.1.3  Mean SNR
8.7.1.4  Average BER
8.7.2  Nakagami Fading Environment
8.7.2.1  Average BER
8.8  Macroscopic Diversity Combiner
8.8.1  Effect of Shadowing
8.8.1.1  Selection Combiner
8.8.1.2  Maximum Ratio Combiner
8.8.2  Microscopic Plus Macroscopic Diversity
Notation and Abbreviations
References

分两卷上传

smart antennas(electrical engineering applied signal processing series).part2.rar
[hide]

[/hide]
【发帖际遇】: seuchinasun在赌场爽了一把, 赢得金币10元.


:27bb 谢谢楼主的分享,不错的资料!!!!
谢谢楼主的分享,
hao  资料
非常感谢上传好书,与大家共享!!!!!!!!!!!
是不是应该翻译成智能天线啊?
:19bb
谢谢楼主无私奉献,好好学习学习。
【发帖际遇】: riverinsun帮助大陆公安抓贼, 获得奖金金币35元.


Smart Antennas在我们国内一般翻译为“智能天线”
【发帖际遇】: hanyu56英雄救美, 获得金币20元.


好好学习学习,感谢楼主分享:30bb
很不错的资料,谢谢楼主分享!!:11bb
感谢楼主分享!!!!!!!!!!!!!
【发帖际遇】: seuchinasun在赌场爽了一把, 赢得金币10元.


楼主的奉献精神令人钦佩,值得鼓励和学习!
:11bb
很不错的资料,谢谢楼主分享!!
:11bb
谢谢楼主分享
非常感谢上传好书,与大家共享!!!!!!!!!!!
:31bb 谢谢楼主分享!!!不能如何?我顶!
Very good. Thanks a lot.:30bb
谢谢楼主的分享,不错的资料!!!!
:18de 感觉还是不错的资料,非常感谢哦
学习........................................................
很不错的资料,谢谢楼主分享!!
不过Smart Antennas应该叫智能天线吧?
:cacakiki5de :cacakiki5de :cacakiki5de
good book, thanks
好东西,感谢分享
好 谢谢 分享~~~~~~~~~
:13bb :12bb :29bb
thanks very much
好东西!谢谢了!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
dddddddddddddddddddddddddddddddddddddddddd
非常感谢楼主的贡献!!!!!!!!!!!!!!!!!!!!!!!!1
啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊
感觉还是不错的资料,非常感谢哦
非常感谢上传好书,与大家共享!!!!!!!!!!!
thank you!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
:cacakiki10de :cacakiki10de
:11bb :11bb :11bb :11bb :11bb
:27bb :27bb :27bb :30bb :30bb :30bb
下了,有空学习学习:( :love
楼主辛苦了,:qql     :lol
感谢分享,呵呵,,,,,,,,,,,,,,
I do not have this book
正是我所想要的,相当好的东西啊,一定要学学啊:17de :17de
感觉还是不错的资料,非常感谢哦!
谢谢楼主的分享,感觉这是很不错的资料呢,先收下了~~~
thank you for your job
谢谢楼主的分享。!!:18bb:19bb
:11bb:11bb:30bb
:27bb 1# qche111
哈哈哈哈哦
好东东好东东好东东
:18de:16bb
Thanks a lot.:45bb
谢谢楼主哈
看看,智能天线的呀
It is very nice book and thanks a lot!
谢谢楼主的分享
好东西,下载了看看
只下了一部分
Thank you for your sharing~~
谢谢分享!
又一部智能天线得著作~~
谢谢分享·~
下来看看,感谢楼主分享~!
哈哈,吼吼~
继续看,继续下,继续谢谢!
这个必须顶,智能天线!!!!!!!!!!!!!!1111
!   C:\Documents and Settings\Bby\桌面\通信天线建模与MATLAB仿真分析-2006.part1.rar: 通信天线建模与MATLAB仿真分析-2006.pdf CRC 失败。文件被破坏
!   C:\Documents and Settings\Bby\桌面\通信天线建模与MATLAB仿真分析-2006.part1.rar: 不可预料的压缩文件末端
!   C:\Documents and Settings\Bby\桌面\通信天线建模与MATLAB仿真分析-2006.part1.rar: 压缩包数据中的 通信天线建模与MATLAB仿真分析-2006.pdf CRC 失败。压缩卷被破坏
看看 谢谢楼主分享{:7_1234:}
看看有什么好东西
谢谢楼主分享
看看,谢谢~
谢谢楼主的分享
好書一本
感謝樓主分享
楼主的奉献精神令人钦佩,值得鼓励和学习!
好书 支持
好书啊,谢谢楼主

{:7_1234:}
好东西啊,辛苦版主了!!!!!!
好书看看
看看
thnaks for sahre
thnaks for sahre
感谢楼主。。
谢谢分享!
smart antennas ,thank you

很不错的资料,谢谢楼主分享!!
好东西,谢谢分享
感觉还是不错的资料,非常感谢哦
let me see
好,看看,谢谢分享,lz
感谢楼主的分享
移动通信系统事业部段世平
good to learn
谢谢楼主分享
thank you
ZI LIAO BU CUO
谢谢                                       
zi liao hen bu cuo ding
看看啊,smart antennas
楼主辛苦了哇哇哇
想看书 赶紧回复吧~
下来看看 谢谢
很好的书
这个可以好哈学习一下
学习学习
Good for us
Thanks
客服中心 搜索
关于我们
关于我们
关注我们
联系我们
帮助中心
资讯中心
企业生态
社区论坛
服务支持
资源下载
售后服务
推广服务
关注我们
官方微博
官方空间
官方微信
返回顶部