书 名:Smart Antennas (Electrical Engineering & Applied Signal Processing Series)
可以译为:《灵敏天线》
作 者:Godara, Lal Chand.
语 言:英文
格 式:PDF
ISBN:084931206X
出版商:CRC Press
出 版:2004年
页数:457
内容简介:(中文)
本书介绍了用于窄带领域的不同处理结构形式,探索了自适应过程,重点介绍简单矩阵的转化算法等等。最后还指出了灵敏天线也适合于宽带信号。
目录:
1 Introduction
1.1 Antenna Gain
1.2 Phased Array Antenna
1.3 Power Pattern
1.4 Beam Steering
1.5 Degree of Freedom
1.6 Optimal Antenna
1.7 Adaptive Antenna
1.8 Smart Antenna
1.9 Book Outline
References
2 Narrowband Processing
2.1 Signal Model
2.1.1 Steering Vector Representation
2.1.2 Eigenvalue Decomposition
2.2 Conventional Beamformer
2.2.1 Source in Look Direction
2.2.2 Directional Interference
2.2.3 Random Noise Environment
2.2.4 Signal-to-Noise Ratio
2.3 Null Steering Beamformer
2.4 Optimal Beamformer
2.4.1 Unconstrained Beamformer
2.4.2 Constrained Beamformer
2.4.3 Output Signal-to-Noise Ratio and Array Gain
2.4.4 Special Case 1: Uncorrelated Noise Only
2.4.5 Special Case 2: One Directional Interference
2.5 Optimization Using Reference Signal
2.6 Beam Space Processing
2.6.1 Optimal Beam Space Processor
2.6.2 Generalized Side-Lobe Canceler
2.6.3 Postbeamformer Interference Canceler
2.6.3.1 Optimal PIC
2.6.3.2 PIC with Conventional Interference Beamformer
2.6.3.3 PIC with Orthogonal Interference Beamformer
2.6.3.4 PIC with Improved Interference Beamformer
2.6.3.5 Discussion and Comments
2.6.3.5.1 Signal Suppression
2.6.3.5.2 Residual Interference
2.6.3.5.3 Uncorrelated Noise Power
2.6.3.5.4 Signal-to-Noise Ratio
2.6.4 Comparison of Postbeamformer Interference Canceler with Element
Space Processor
2.6.5 Comparison in Presence of Look Direction Errors
2.7 Effect of Errors
2.7.1 Weight Vector Errors
2.7.1.1 Output Signal Power
2.7.1.2 Output Noise Power
2.7.1.3 Output SNR and Array Gain
2.7.2 Steering Vector Errors
2.7.2.1 Noise-Alone Matrix Inverse Processor
2.7.2.1.1 Output Signal Power
2.7.2.1.2 Total Output Noise Power
2.7.2.1.3 Output SNR and Array Gain
2.7.2.2 Signal-Plus-Noise Matrix Inverse Processor
2.7.2.2.1 Output Signal Power
2.7.2.2.2 Total Output Noise Power
2.7.2.2.3 Output SNR
2.7.2.3 Discussion and Comments
2.7.2.3.1 Special Case 1: Uncorrelated Noise Only
2.7.2.3.2 Special Case 2: One Directional Interference
2.7.3 Phase Shifter Errors
2.7.3.1 Random Phase Errors
2.7.3.2 Signal Suppression
2.7.3.3 Residual Interference Power
2.7.3.4 Array Gain
2.7.3.5 Comparison with SVE
2.7.4 Phase Quantization Errors
2.7.5 Other Errors
2.7.6 Robust Beamforming
Notation and Abbreviations
References
3 Adaptive Processing
3.1 Sample Matrix Inversion Algorithm
3.2 Unconstrained Least Mean Squares Algorithm
3.2.1 Gradient Estimate
3.2.2 Covariance of Gradient
3.2.3 Convergence of Weight Vector
3.2.4 Convergence Speed
3.2.5 Weight Covariance Matrix
3.2.6 Transient Behavior of Weight Covariance Matrix
3.2.7 Excess Mean Square Error
3.2.8 Misadjustment
3.3 Normalized Least Mean Squares Algorithm
3.4 Constrained Least Mean Squares Algorithm
3.4.1 Gradient Estimate
3.4.2 Covariance of Gradient
3.4.3 Convergence of Weight Vector
3.4.4 Weight Covariance Matrix
3.4.5 Transient Behavior of Weight Covariance Matrix
3.4.6 Convergence of Weight Covariance Matrix
3.4.7 Misadjustment
3.5 Perturbation Algorithms
3.5.1 Time Multiplex Sequence
3.5.2 Single-Receiver System
3.5.2.1 Covariance of the Gradient Estimate
3.5.2.2 Perturbation Noise
3.5.3 Dual-Receiver System
3.5.3.1 Dual-Receiver System with Reference Receiver
3.5.3.2 Covariance of Gradient
3.5.4 Covariance of Weights
3.5.4.1 Dual-Receiver System with Dual Perturbation
3.5.4.2 Dual-Receiver System with Reference Receiver
3.5.5 Misadjustment Results
3.5.5.1 Single-Receiver System
3.5.5.2 Dual-Receiver System with Dual Perturbation
3.5.5.3 Dual-Receiver System with Reference Receiver
3.6 Structured Gradient Algorithm
3.6.1 Gradient Estimate
3.6.2 Examples and Discussion
3.7 Recursive Least Mean Squares Algorithm
3.7.1 Gradient Estimates
3.7.2 Covariance of Gradient
3.7.3 Discussion
3.8 Improved Least Mean Squares Algorithm
3.9 Recursive Least Squares Algorithm
3.10 Constant Modulus Algorithm
3.11 Conjugate Gradient Method
3.12 Neural Network Approach
3.13 Adaptive Beam Space Processing
3.13.1 Gradient Estimate
3.13.2 Convergence of Weights
3.13.3 Covariance of Weights
3.13.4 Transient Behavior of Weight Covariance
3.13.5 Steady-State Behavior of Weight Covariance
3.13.6 Misadjustment
3.13.7 Examples and Discussion
3.14 Signal Sensitivity of Constrained Least Mean Squares Algorithm
3.15 Implementation Issues
3.15.1 Finite Precision Arithmetic
3.15.2 Real vs. Complex Implementation
3.15.2.1 Quadrature Filter
3.15.2.2 Analytical Signals
3.15.2.3 Beamformer Structures
3.15.2.4 Real LMS Algorithm
3.15.2.5 Complex LMS Algorithm
3.15.2.6 Discussion
Notation and Abbreviations
References
Appendices
4 Broadband Processing
4.1 Tapped-Delay Line Structure
4.1.1 Description
4.1.2 Frequency Response
4.1.3 Optimization
4.1.4 Adaptive Algorithm
4.1.5 Minimum Mean Square Error Design
4.1.5.1 Derivation of Constraints
4.1.5.2 Optimization
4.2 Partitioned Realization
4.2.1 Generalized Side-Lobe Canceler
4.2.2 Constrained Partitioned Realization
4.2.3 General Constrained Partitioned Realization
4.2.3.1 Derivation of Constraints
4.2.3.2 Optimization
4.3 Derivative Constrained Processor
4.3.1 First-Order Derivative Constraints
4.3.2 Second-Order Derivative Constraints
4.3.3 Optimization with Derivative Constraints
4.3.3.1 Linear Array Example
4.3.4 Adaptive Algorithm
4.3.5 Choice of Origin
4.4 Correlation Constrained Processor
4.5 Digital Beamforming
4.6 Frequency Domain Processing
4.6.1 Description
4.6.2 Relationship with Tapped-Delay Line Structure Processing
4.6.2.1 Weight Relationship
4.6.2.2 Matrix Relationship
4.6.2.3 Derivation of Rf(k)
4.6.2.4 Array with Presteering Delays
4.6.2.5 Array without Presteering Delays
4.6.2.6 Discussion and Comments
4.6.3 Transformation of Constraints
4.6.3.1 Point Constraints
4.6.3.2 Derivative Constraints
4.7 Broadband Processing Using Discrete Fourier Transform Method
4.7.1 Weight Estimation
4.7.2 Performance Comparison
4.7.2.1 Effect of Filter Length
4.7.2.2 Effect of Number of Elements in Array
4.7.2.3 Effect of Interference Power
4.7.3 Computational Requirement Comparison
4.7.4 Schemes to Reduce Computation
4.7.4.1 Limited Number of Bins Processing
4.7.4.2 Parallel Processing Schemes
4.7.4.2.1 Parallel Processing Scheme 1
4.7.4.2.2 Parallel Processing Scheme 2
4.7.4.2.3 Parallel Processing Scheme 3
4.7.5 Discussion
4.7.5.1 Higher SNR with Less Processing Time
4.7.5.2 Robustness of DFT Method
4.8 Performance
Notation and Abbreviations
References
5 Correlated Fields
5.1 Correlated Signal Model
5.2 Optimal Element Space Processor
5.3 Optimized Postbeamformer Interference Canceler Processor
5.4 Signal-to-Noise Ratio Performance
5.4.1 Zero Uncorrelated Noise
5.4.2 Strong Interference and Large Number of Elements
5.4.3 Coherent Sources
5.4.4 Examples and Discussion
5.5 Methods to Alleviate Correlation Effects
5.6 Spatial Smoothing Method
5.6.1 Decorrelation Analysis
5.6.2 Adaptive Algorithm
5.7 Structured Beamforming Method
5.7.1 Decorrelation Analysis
5.7.1.1 Examples and Discussion
5.7.2 Structured Gradient Algorithm
5.7.2.1 Gradient Comparison
5.7.2.2 Weight Vector Comparison
5.7.2.3 Examples and Discussion
5.8 Correlated Broadband Sources
5.8.1 Structure of Array Correlation Matrix
5.8.2 Correlated Field Model
5.8.3 Structured Beamforming Method
5.8.4 Decorrelation Analysis
5.8.4.1 Examples and Discussion
Notation and Abbreviations
References
6 Direction-of-Arrival Estimation Methods
6.1 Spectral Estimation Methods
6.1.1 Bartlett Method
6.2 Minimum Variance Distortionless Response Estimator
6.3 Linear Prediction Method
6.4 Maximum Entropy Method
6.5 Maximum Likelihood Method
6.6 Eigenstructure Methods
6.7 MUSIC Algorithm
6.7.1 Spectral MUSIC
6.7.2 Root-MUSIC
6.7.3 Constrained MUSIC
6.7.4 Beam Space MUSIC
6.8 Minimum Norm Method
6.9 CLOSEST Method
6.10 ESPRIT Method
6.11 Weighted Subspace Fitting Method
6.12 Review of Other Methods
6.13 Preprocessing Techniques
6.14 Estimating Source Number
6.15 Performance Comparison
6.16 Sensitivity Analysis
Notation and Abbreviations
References
7 Single-Antenna System in Fading Channels
7.1 Fading Channels
7.1.1 Large-Scale Fading
7.1.2 Small-Scale Fading
7.1.3 Distribution of Signal Power
7.2 Channel Gain
7.3. Single-Antenna System
7.3.1 Noise-Limited System
7.3.1.1 Rayleigh Fading Environment
7.3.1.2 Nakagami Fading Environment
7.3.2 Interference-Limited System
7.3.2.1 Identical Interferences
7.3.2.2 Signal and Interference with Different Statistics
7.3.3 Interference with Nakagami Fading and Shadowing
7.3.4 Error Rate Performance
Notation and Abbreviations
References
8 Diversity Combining
8.1 Selection Combiner
8.1.1 Noise-Limited Systems
8.1.1.1 Rayleigh Fading Environment
8.1.1.1.1 Outage Probability
8.1.1.1.2 Mean SNR
8.1.1.1.3 Average BER
8.1.1.2 Nakagami Fading Environment
8.1.1.2.1 Output SNR pdf
8.1.1.2.2 Outage Probability
8.1.1.2.3 Average BER
8.1.2 Interference-Limited Systems
8.1.2.1 Desired Signal Power Algorithm
8.1.2.2 Total Power Algorithm
8.1.2.3 SIR Power Algorithm
8.2 Switched Diversity Combiner
8.2.1 Outage Probability
8.2.2 Average Bit Error Rate
8.2.3 Correlated Fading
8.3 Equal Gain Combiner
8.3.1 Noise-Limited Systems
8.3.1.1 Mean SNR
8.3.1.2 Outage Probability
8.3.1.3 Average BER
8.3.1.4 Use of Characteristic Function
8.3.2 Interference-Limited Systems
8.3.2.1 Outage Probability
8.3.2.2 Mean Signal Power to Mean Interference Power Ratio
8.4 Maximum Ratio Combiner
8.4.1 Noise-Limited Systems
8.4.1.1 Mean SNR
8.4.1.2 Rayleigh Fading Environment
8.4.1.2.1 PDF of Output SNR
8.4.1.2.2 Outage Probability
8.4.1.2.3 Average BER
8.4.1.3 Nakagami Fading Environment
8.4.1.4 Effect of Weight Errors
8.4.1.4.1 Output SNR pdf
8.4.1.4.2 Outage Probability
8.4.1.4.3 Average BER
8.4.2 Interference-Limited Systems
8.4.2.1 Mean Signal Power to Interference Power Ratio
8.4.2.2 Outage Probability
8.4.2.3 Average BER
8.5 Optimal Combiner
8.5.1 Mean Signal Power to Interference Power Ratio
8.5.2 Outage Probability
8.5.3 Average Bit Error Rate
8.6 Generalized Selection Combiner
8.6.1 Moment-Generating Functions
8.6.2 Mean Output Signal-to-Noise Ratio
8.6.3 Outage Probability
8.6.4 Average Bit Error Rate
8.7 Cascade Diversity Combiner
8.7.1 Rayleigh Fading Environment
8.7.1.1 Output SNR pdf
8.7.1.2 Outage Probability
8.7.1.3 Mean SNR
8.7.1.4 Average BER
8.7.2 Nakagami Fading Environment
8.7.2.1 Average BER
8.8 Macroscopic Diversity Combiner
8.8.1 Effect of Shadowing
8.8.1.1 Selection Combiner
8.8.1.2 Maximum Ratio Combiner
8.8.2 Microscopic Plus Macroscopic Diversity
Notation and Abbreviations
References
分两卷上传
smart antennas(electrical engineering applied signal processing series).part2.rar
[hide]
[/hide]
Very good. Thanks a lot.:30bb
学习........................................................
! C:\Documents and Settings\Bby\桌面\通信天线建模与MATLAB仿真分析-2006.part1.rar: 通信天线建模与MATLAB仿真分析-2006.pdf CRC 失败。文件被破坏
! C:\Documents and Settings\Bby\桌面\通信天线建模与MATLAB仿真分析-2006.part1.rar: 不可预料的压缩文件末端
! C:\Documents and Settings\Bby\桌面\通信天线建模与MATLAB仿真分析-2006.part1.rar: 压缩包数据中的 通信天线建模与MATLAB仿真分析-2006.pdf CRC 失败。压缩卷被破坏