搜索附件  
头雁微网 附件中心 Application of high-thermal-conductivity diamond for space phased array antenna: Application of high thermal conductivity diamond for space phased array antenna.pdf
附件中心&附件聚合2.0
For Discuz! X3.5 © hgcad.com

Application of high-thermal-conductivity diamond for space phased array antenna: Application of high thermal conductivity diamond for space phased array antenna.pdf

 

Application of high-thermal-conductivity diamond for space phased array antenna:
Abstract
Active phased array antenna typically featured high performance, high device integration, and high heat flux, making it difficult to dissipate heat. Diamond, the substance with the closest arrangement of atoms in nature, has the advantages of a high thermal conductivity and strong adaptability to the space environment. The batch applications of high-thermal-conductivity diamonds for the thermal management of the phased array antennas of the inter-satellite links were introduced in this paper. The diamond was developed by the direct-current arc-plasma chemical vapor deposition method. The product size, thermal conductivity, precision, and application scale all met the engineering requirements. The high-precision assembly of the diamond and the structural frame enabled the efficient heat collection and transfer from the distributed point heat sources of multiple transmit/receive (T/R) modules. Verified on the ground, the thermal matching design between the diamond and the metal frame exhibited an outstanding heat dissipation performance. After four satellites using the diamonds were launched, the flight data showed good antenna thermal control, with temperature gradients of the T/R modules less than 2.2 °C, further verifying the rationality and effectiveness of using high-thermal-conductivity diamonds in the thermal design and implementation of antennas.



客服中心 搜索
关于我们
关于我们
关注我们
联系我们
帮助中心
资讯中心
企业生态
社区论坛
服务支持
资源下载
售后服务
推广服务
关注我们
官方微博
官方空间
官方微信
返回顶部