返回列表 发新帖
收起左侧
楼主: 我的妮子 - 

微波实验参数图解及模拟程序代码

[复制链接]
发表于 2007-3-20 00:03:57  | 显示全部楼层
Solitons(孤立子)
   Waves are in general dispersive and the original wave form becomes dispersed as waves propagate over a large distance. However, in some waves, dispersion can be compensated by nonlinearity and they can propagate over a large distance keeping original wave forms. Waves in shallow water and plasma waves known as the ion acoustic wave are typical examples. In fact both waves can be described by a common nonlinear wave equation (KdeV equation) originally derived by Kortweg and de Vries.
Animation shows propagation of large (amplitude = 8) and small (amplitude = 2) amplitude solitons and their passing collision. Soliton propagates faster as its amplitude increases and if two solitons of different amplitudes are created, collision can occur. Note that collision does not destroy wave forms of either wave. Snapshots before, at, and after collision are also shown. At the instant of collision, the wave amplitude becomes smaller than the sum of the two waves. This is a typical nonlinear behavior wherein the superposition principle, which works universally in linear waves, entirely breaks down. Similar nonlinear wave propagation occurs in light waves guided along an optical fiber.

Fast, larger amplitude soliton. Amplitude = 8.

> with(plots):
animate(8*(sech(2*(x-.5*16*t)))^2,x=-10..10,t=-1.2..1.2,frames=49,numpoints=500,color=red,view=[-10..10,0..10]);

                               
登录/注册后可看大图
Slow, smaller amplitude soliton. Amplitude = 2. Velocity is one half of that of the fast soliton.
> animate(2*(sech(x-.5*4*t))^2,x=-10..10,t=-1.2..1.2,frames=49,numpoints=500,color=red,view=[-10..10,0..10]);

                               
登录/注册后可看大图
Passing collision of fast and slow solitons.
> with(plots):
animate(12*(3+4*cosh(2*x-.5*8*t)+cosh(4*x-.5*64*t))/(3*cosh(x-.5*28*t)+cosh(3*x-.5*36*t))^2,x=-10..10,t=-1.2..1.2,frames=49,numpoints=1000,color=red,view=[-10..10,0..10]);

                               
登录/注册后可看大图
Snapshot at t = -1.
> t:=-1:
plot(12*(3+4*cosh(2*x-.5*8*t)+cosh(4*x-.5*64*t))/(3*cosh(x-.5*28*t)+cosh(3*x-.5*36*t))^2,x=-10..10,numpoints=1000,color=red,view=[-10..10,0..10]);

                               
登录/注册后可看大图
Snapshot at t = -0.5.> t:=-0.5:
plot(12*(3+4*cosh(2*x-.5*8*t)+cosh(4*x-.5*64*t))/(3*cosh(x-.5*28*t)+cosh(3*x-.5*36*t))^2,x=-10..10,numpoints=1000,color=red,view=[-10..10,0..10]);

                               
登录/注册后可看大图
Snapshot at t = 0. Note that the amplitude is only 6.0. The pulse width is broadened.
> t:=0:
plot(12*(3+4*cosh(2*x-.5*8*t)+cosh(4*x-.5*64*t))/(3*cosh(x-.5*28*t)+cosh(3*x-.5*36*t))^2,x=-10..10,numpoints=1000,color=red,view=[-10..10,0..10]);

                               
登录/注册后可看大图
Snapshot at t = 0.5.
> t:=0.5:
plot(12*(3+4*cosh(2*x-.5*8*t)+cosh(4*x-.5*64*t))/(3*cosh(x-.5*28*t)+cosh(3*x-.5*36*t))^2,x=-10..10,numpoints=1000,color=red,view=[-10..10,0..10]);

                               
登录/注册后可看大图
Snapshot at t =1.> t:=1.0:
plot(12*(3+4*cosh(2*x-.5*8*t)+cosh(4*x-.5*64*t))/(3*cosh(x-.5*28*t)+cosh(3*x-.5*36*t))^2,x=-10..10,numpoints=1000,color=red,view=[-10..10,0..10]);


                               
登录/注册后可看大图
以己之微·网博天下:博览微网之术·创造成功之路!
发表于 2007-3-20 00:04:29  | 显示全部楼层
Dispersive Waves(色散波)
   
    In a nondispersive wave medium, waves can propagate without deformation Electromagnetic waves in unbounded free space are nondispersive as well as nondissipative and thus can propagate over astronomical distances. Sound waves in air are also nearly nondispersive even in the ultrasonic frequency range. If not, that is, if high frequency notes (e.g., piccolo) and low frequency notes (e.g., base) propagate at different velocities, they would reach our ears at different times, and music played by an orchestra would not be harmonious. Most waves in material media are dispersive, however, and wave forms originally set up are bound to change in a manner that the wave energy is more spatially spread out or dispersed.

    Animation 1 below shows propagation of dispersive wave packet and Animation 2 nondispersive wavepacket. In making the animation, 100 sinusoidal waves are superposed for a dispersion relation,

    (The dispersion relation describes the ion acoustic wave in a plasma and also approximately shallow water waves. See, for example, A. Hirose et al., Plasma Physics, Vol. 20, p. 1179 (1978), in which response of the ion acoustic wave to an impulse has been analyzed.) Note that in the dispersive case shown in the top animation, long wavelength components propagate faster than short wavelength components. The envelope of the wave packet propagates at the group velocity. Wave ripples propagate at the phase velocity. In contrast, nondispersive wave packet (Animation 2) described by maintains the original wave form.

    Animation 3 shows superposition of two sinusoidal waves in dispersive case, sin(x - t) + sin(1.2x - 1.1t) (group velocity = half of phase velocity), while the last animation shows the case of nondisperve wave, sin(x - t) + sin(1.2x - 1.2t). Note that in the dispersive case (Animation 3), wave propagation is not simple parallel shift.

1. Dispersive wavepacket
> with(plots):
animate(sum(.07*(exp(-(.1*k-3)^2)+exp(-(0.1*k+3)^2))*cos(.1*k*x-.1*k/sqrt(1+.1*(.1*k)^2)*t),k=1..100),x=-4..20,t=0..30,frames=60,numpoints=200,color=red);

                               
登录/注册后可看大图
2. Nondispersive wavepacket
> animate(sum(.07*(exp(-(.1*k-3)^2)+exp(-(0.1*k+3)^2))*cos(.1*k*x-.1*k/sqrt(1+.0*(.1*k)^2)*t),k=1..100),x=-4..20,t=0..30,frames=60,numpoints=200,color=red);

                               
登录/注册后可看大图
3. Dispersive sinusoidal waves
> animate(sin(x-t)+sin(1.2*x-1.1*t),x=0..50,t=0..63,numpoints=150,frames=100,color=red);

                               
登录/注册后可看大图
4. Nondispersive sinusoidal waves
> animate(sin(x-t)+sin(1.2*x-1.2*t),x=0..50,t=0..63,numpoints=150,frames=100,color=red);

                               
登录/注册后可看大图
已有1人评分 理由
ciuan + 1 + 12 精品文章

查看全部评分 总评分: +1  +12 

以己之微·网博天下:博览微网之术·创造成功之路!
发表于 2007-3-20 00:04:47  | 显示全部楼层
Wave Reflection at an Impedance Discontinuity(阻抗不连续性处的反射)

The impedance for mechanical waves is defined as the ratio between the force wave and velocity wave and in general takes the for

                               
登录/注册后可看大图
For transverse waves in a string with linear mass density

                               
登录/注册后可看大图
(kg/m) and tension T (N), the impedance is

                               
登录/注册后可看大图
If two strings with different mass densities are connected with a common tension, the impedance discontinuity at the joint causes wave reflection. For an incident displacement wave of unit amplitude in string 1, the reflected wave is

                               
登录/注册后可看大图
and transmitted wave is

                               
登录/注册后可看大图
The first animation shows reflection and transmission of incident pulse wave of unit amplitude when the mass density ratio is 4, Z1/Z2 = 1/2. The reflected wave is negative and its peak is -1/3. The transmitted wave, which propagates slower, has an amplitude of 1 - 1/3 = +2/3, as expected from the formulae.
The second animation shows the case Z1/Z2 = 2, i.e., the incident wave is in a heavier string. There is no sign reversal in the reflected wave in this case. The transmitted wave has an amplitude larger than the incident wave. This does not mean amplification in wave energy. (Why not?)

The third animation shows reflection at a fixed end (Z2 = infinity) and fourth animation shows reflection at a free end (Z2 = 0).

Reflection of pulse wave at an impedenace discontinuity when Z_1/Z_2 = 0.5.

> with(plots):
animate((exp(-(x-t)^2)-1/3*exp(-(x+t)^2))*Heaviside(-x)+2/3*exp(-4*(x-.5*t)^2)*Heaviside(x),x=-10..10,t=-10..10,frames=50,color=red,numpoints=200);

                               
登录/注册后可看大图
When Z_1/Z_2 = 2.0.
> with(plots):
animate((exp(-(x-t)^2)+1/3*exp(-(x+t)^2))*Heaviside(-x)+4/3*exp(-.25*(x-2*t)^2)*Heaviside(x),x=-10..20,t=-10..10,frames=50,color=red,numpoints=200);

                               
登录/注册后可看大图
When Z_2 = infinity. (Fixed end)
> with(plots):
animate((exp(-(x-t)^2)-exp(-(x+t)^2)),x=-10..0,t=-10..10,frames=50,color=red,numpoints=200);

                               
登录/注册后可看大图
When Z_2 = 0. (Free end)
> animate((exp(-(x-t)^2)+exp(-(x+t)^2)),x=-10..0,t=-10..10,frames=50,color=red,numpoints=200);

                               
登录/注册后可看大图
以己之微·网博天下:博览微网之术·创造成功之路!
发表于 2007-8-20 12:00:19  | 显示全部楼层

求助

我想用matlab实现积分运算,在积分式子内有级数的运算,请问如何实现?
请大虾指点
以己之微·网博天下:博览微网之术·创造成功之路!
limf83919 该用户已被删除
发表于 2007-10-9 16:57:55  | 显示全部楼层
提示: 作者被禁止或删除 内容自动屏蔽
以己之微·网博天下:博览微网之术·创造成功之路!
发表于 2008-6-3 12:17:56  | 显示全部楼层
:11bb
以己之微·网博天下:博览微网之术·创造成功之路!
发表于 2008-6-4 21:45:46  | 显示全部楼层
强强贴留声,
楼主太强大强大了!
以己之微·网博天下:博览微网之术·创造成功之路!
luomw 该用户已被删除
发表于 2008-10-3 21:52:37  | 显示全部楼层
提示: 作者被禁止或删除 内容自动屏蔽
以己之微·网博天下:博览微网之术·创造成功之路!
发表于 2008-12-31 16:57:10  | 显示全部楼层
牛呀,学习了,呵呵:53bb :53bb :53bb
以己之微·网博天下:博览微网之术·创造成功之路!
发表于 2009-3-19 13:16:57  | 显示全部楼层
非常不错的东西,太感谢楼主了!!!
以己之微·网博天下:博览微网之术·创造成功之路!

发表回复

您需要登录后才可以回帖 登录 | 注册

本版积分规则

返回列表 客服中心 搜索
关于我们
关于我们
关注我们
联系我们
帮助中心
资讯中心
企业生态
社区论坛
服务支持
资源下载
售后服务
推广服务
关注我们
官方微博
官方空间
官方微信
快速回复 返回顶部 返回列表